Numerical holography and far-from-equilibrium dynamics

Laurence G. Yaffe University of Washington

Strong and Electroweak Matter, Lausanne, July 2014

motivation

- Use gauge/gravity duality to study, far-from-equilibrium strongly interacting dynamics
- Go beyond near-equilibrium dynamics (linear response, probe approximation)
- Honestly solve dynamics of interesting initial states

relativistic heavy ion collisions

Relevant dynamics:

Very early: partonic, perturbative (?) Plasma phase: strongly coupled Evidence: screening lengths, viscosity, ...

Many questions:

How fast do produced partons isotropize? When/where is hydrodynamics valid? Signatures of strongly coupled dynamics?

No fully controlled theoretical methods.

relativistic heavy ion collisions

Idealize:

SU(3) gauge field + quarks \rightarrow SU(N_c) gauge field + adjoint matter

strongly coupled QCD \Rightarrow strongly coupled $\mathcal{N}=4$ SYM

colors: $N_c = 3 \Rightarrow N_c = \infty$ 't Hooft coupling: $\lambda \approx 1 \Rightarrow \lambda \gg 1$

Use holographic methods to study non-equilibrium, strongly coupled non-Abelian plasma dynamics

gauge/gravity duality

- a.k.a. "AdS/CFT duality," "gauge/string duality," "holography"
- Some non-Abelian gauge theories have **exact** reformulation as higher dimensional gravitational (or string) theories.

Simplest case: maximally supersymmetric SU(N_c) Yang-Mills (\mathcal{N} =4 SYM) = string theory on AdS₅ × S⁵. More complicated generalizations for less supersymmetric, non-conformal theories.

- Strong coupling (and large *N*_c) limit of quantum field theory given by classical dynamics in dual gravitational description.
- Holographic description gives geometric representation of renormalization flow:

holography: features

- strongly coupled, large NQFT = classical (super)gravity in higher dimension
 - valid description on all scales
 - gravitational fluctuations: $1/N^2$ suppressed
 - QFT state + asymptotically AdS geometry
 - $O(N^2)$ entropy \Rightarrow gravitational (black brane) horizon
 - thermalization
 gravitational infall, horizon formation & equilibration

applications of holography

• Equilibrium properties of strongly coupled theories:

static geometries ⇔ equilibrium states of QFT AdS5 black hole ⇔ non-Abelian plasma

• Near-equilibrium dynamics:

small fluctuations ⇒ linear response, spectral densities, transport coefficients, quasi-normal modes, photoemission, probe dynamics

• Far-from-equilibrium dynamics: gravitational initial value problems

far-from-equilibrium dynamics

- heavy-ion collisions:
 - homogeneous isotropization
 - boost invariant flow
 - colliding planar shocks
 - colliding "nuclei"
- turbulence:
 - 2D normal fluids
 - 2D superfluids
- other stuff:
 - dynamical quenches
 - black hole formation/ring-down

P. Chesler, L.Y., M. Heller, D. Mateos, W. van der Schee, ...

P. Chesler, L.Y., R. Janik, M. Heller, P. Witaszczyk, W. van der Schee

P. Chesler, L.Y., J. Casalderrey Solano, M. Heller, D. Mateos, W. van der Schee

W. van der Schee, P. Romatschke, S. Pratt, P. Chesler, L.Y.

A. Adams, P. Chesler, H. Liu

A. Adams, P. Chesler, H. Liu

M.J. Bhaseen, J. Gauntlett, J. Sonner, T. Wiseman, A. Garcia-Garcia; B. Craps, L. Lehner, K. Schalm, R. Myers

H. Bantilan, F. Pretorius, S. Gubser

this talk

- Methods
- Colliding shocks
 - dependence on shock width?
 - surviving remnants of initial shocks?
 - approximate boost invariance?
 - finite size "nuclei"?
- Homogeneous equilibration
 - sensitivity to charge density or magnetic field?
 - degree of non-linearity?
- 2D turbulence
 - normal fluids
 - superfluids

work in progress w. Paul Chesler

work in progress w. John Fuini

methods

- Characteristic formulation
 - coordinates adapted to infalling null geodesics
 - fix residual diffeomorphisms: planar apparent horizon
 - Einstein equations: nested linear radial ODEs
 - discretize using pseudo-spectral derivatives
 - low-pass filtering: alleviate aliasing, spectral blocking
 - domain decomposition
- Fast, accurate, stable evolution achievable

event

apparent

borizon

x

null

geodesic

 $r = \infty$

borizon boundary

initial data: choices

- Use time-dependent external fields:
 - time-dependent dynamics 🖨 external work done on system

 $t \approx 0$

start

t > 0

evolve

11

• Do scattering experiment:

• Choose geometry on initial (null) surface

colliding planar shocks

- energy density localized on infinite planar sheets
- caricature of large, Lorentz-contracted nuclei
- questions:
 - domain of validity of hydrodynamic approximation?
 - dependence on longitudinal profile?
 - surviving remnants?
 - approximate boost invariance?

colliding planar shocks

• 2D translation invariance ⇒ 2+1D PDEs

$$ds^{2} = \Sigma(X)^{2} \,\hat{g}_{ij}(X) \,dx^{i} \,dx^{j} + 2dt \left[dr - A(X) \,dt - F_{i}(X) \,dx^{i}\right]$$
$$X = (t, z, r) \qquad \|\hat{g}_{ij}\| = \text{diag}(e^{B}, e^{B}, e^{-2B})$$

- Initial conditions: superposition of counter-propagating planar shocks
 - Single shock, arbitrary longitudinal profile: known solution:

$$ds^{2} = r^{2}[-dx_{+}dx_{-} + dx_{\perp}^{2}] + \frac{1}{r^{2}} \left[dr^{2} + h(x_{\pm}) dx_{\pm}^{2} \right]$$
 Janik & Peschanski

• Choose Gaussian profile with width w, surface energy density μ^3 :

 $h(x_{\pm}) \equiv \mu^3 \, (2\pi w^2)^{-1/2} \, e^{-\frac{1}{2}x_{\pm}^2/w^2}$

• Results depend on dimensionless width parameter $w\mu$

initial data

- transformation to infalling coordinates:
 - must solve coupled 1+1D PDEs
 - shocks extend "forward" deep in bulk
 - apparent horizon exists regardless of separation

more recent results

From full stopping to transparency in a holographic model of heavy ion collisions

Jorge Casalderrey-Solana,¹ Michal P. Heller,^{2, *} David Mateos,^{3, 4} and Wilke van der Schee⁵

1305.4919

background energy density = 1.5 - 7.5% of single shock peak energy density

"We uncover a cross-over between two different dynamical regimes... At high energies, receding fragments move outward at the speed of light."

newer results (I)

C&Y: 1309.1439

New: no background energy density

newer results (II)

 \boldsymbol{z}

no background energy density, longer time evolution

qualitative features

validity of hydrodynamics

figure of merit:

$$\mathcal{R} \equiv \frac{1}{\bar{p}} \left[(\langle T^{xx} \rangle - T^{xx}_{\text{hydro}})^2 + (\langle T^{zz} \rangle - T^{zz}_{\text{hydro}})^2 \right]^{1/2} \\ \leq 15\% \qquad \uparrow \\ \text{first order viscous}$$

hydro works even when viscous effects are O(1):

boost invariant flow:

$$u_{\mu} dx^{\mu} = d\tau \equiv \cosh y \, dt$$
$$\varepsilon = \frac{3}{4} \frac{(\pi \Lambda)^4}{(\Lambda \tau)^{4/3}} \left[1 - \frac{C}{(\Lambda \tau)^4} \right]$$

proper time $\tau \equiv \sqrt{t^2 - z^2}$ rapidity $y \equiv \tanh^{-1}(z/t)$

local boost invariance: $\Lambda \to \Lambda(y)$

colliding "nuclei"

- finite transverse extent, cylindrically symmetric
- single "nucleus": smooth, localized null "shock"
 - ✓ exact solution = linear superposition of infinitely boosted point sources
 Gubser, Pufu, Yarom
 - \checkmark transformation to null infalling coordinates
- implementation for general 4+1D case: in progress

colliding shocks: lessons

- Early times: large anisotropy, far from local equilibrium
- Rapidly attenuating outgoing maxima, no surviving remnants
- Mid-rapidity: hydrodynamics quickly becomes valid, despite large viscous effects

onset of hydro validity $\approx 4/\mu$ after initial interaction

 $\mu \approx 2.3 \text{ GeV}$ for modeling RHIC $\Rightarrow T_{hydro} \approx 0.35 \text{ fm/c}$

- Near outgoing lightcone: hydrodynamics not reliable
- Central region: "local" but not global boost-invariance

- caricature of early moments of QGP
- no spatial gradients
 - ➡ no hydrodynamic response
 - exponential relaxation
- questions:
 - relaxation time scale?
 - onset of linearized regime?
 - sensitivity to (baryon) charge density?
 - sensitivity to magnetic field?

arXiv:0812.2053

spatial homogeneity

$$\implies g_{\mu\nu} = g_{\mu\nu}(t,r)$$

→ 1+1D PDEs

$$\|\hat{g}_{ij}\| = \operatorname{diag}(e^B, e^B, e^{-2B})$$

$$0 = \Sigma'' + \frac{1}{2}B'^{2}\Sigma$$

$$0 = \Sigma(\dot{\Sigma})' + 2\Sigma'\dot{\Sigma} - 2\Sigma^{2},$$

$$0 = \Sigma(\dot{B})' + \frac{3}{2}(\Sigma'\dot{B} + B'\dot{\Sigma}),$$

$$0 = A'' + 3B'\dot{B} - 12\Sigma'\dot{\Sigma}/\Sigma^{2} + 4$$

 $\dot{h} \equiv d_+ h , \quad h' \equiv \partial_r h$

(rescaled) pressure anisotropy vs. lowest quasinormal mode

transverse & longitudinal pressure

homogeneous isotropization: recent work

- sensitivity to initial data choice
- sensitivity to non-zero charge density
- sensitivity to non-zero magnetic field
- deviation from linearized dynamics

initial data: Gaussian anisotropy function B(r)

anisotropy function *B*(*r*)

transverse & longitudinal pressure

initial data: Gaussian anisotropy function B(r)

anisotropy function *B*(*r*)

initial data: Gaussian anisotropy function B(r)

anisotropy function *B*(*r*)

transverse & longitudinal pressure

see also: Heller, Mateos, van der Schee, Triana 1304.5172 27

non-zero charge density

- heavy ion collisions: $\mu/T = O(0.2)$
- sensitivity to plasma constituents?
- equilibrium state 🖛 Reissner-Nordstrom black brane
 - maximal charge density + extremal brane
 - O(10%) change in quasi-normal mode frequencies

non-zero charge density

non-zero magnetic field

- heavy ion collisions: much concern about E&M effects
- sensitivity to magnetic field?
 - externally imposed anisotropy
 - trace anomaly **>** broken scale invariance

• $\langle T_{\mu\nu} \rangle = \kappa \left[\tilde{g}_{\mu\nu}^{(4)} - \eta_{\mu\nu} \operatorname{tr} (\tilde{g}^{(4)}) + c_0 \tilde{h}_{\mu\nu}^{(4)} \right] \quad \|\tilde{h}_{\alpha\beta}^{(4)}\| = \frac{1}{2} \mathcal{B}^2 \operatorname{diag}(+1, +1, +1, -1)$

classical E&M
 stress-energy

non-zero magnetic field

homogeneous isotropization: lessons

- relaxation time scale = gravitational infall time
- remarkably little sensitivity to plasma constituents
- remarkably little sensitivity to added magnetic field
- dynamics, as probed by boundary observables, is nearly linear even very, very far from equilibrium!

remarks (I)

- using gauge/gravity duality to study strongly coupled far-from-equilibrium dynamics works for interesting variety of problems
 - characteristic formulation, adapted to gravitational infall remarkably simple equations allowing efficient integration
 - can achieve stable evolution
 - desktop resources suffice for 1+1D, 2+1D, and even 3+1D problems
- no need to be professional numerical relativist!

remarks (II)

• work to date has only scratched the surface; many interesting generalizations await:

• collisions:

- asymmetric planar shocks
- "nuclei" with finite transverse extent
- turbulence in three spatial dimensions:
 - normal fluids
 - superfluids
- dynamics in non-conformal theories with more complicated dual gravitational descriptions