Running coupling corrections to the evolution of jet-quenching

Dionysios Triantafyllopoulos ECT*/FBK, Trento, Italy

SEWM, Lausanne, 17 July 2014

E. Iancu & DNT, submitted to PRD (no answer at all yet ...) [arXiv:1405.3525]

<u>Outline</u>

 \square *p*_⊥-broadening in shockwave and in medium at tree-level

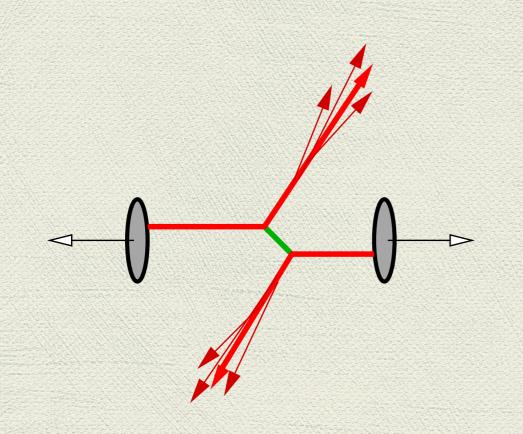
Short-lived quantum fluctuations and evolution

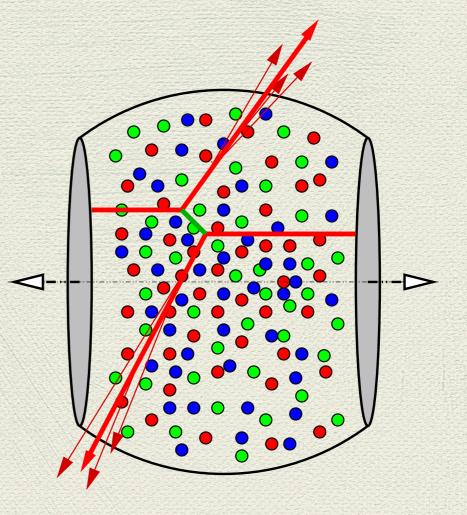
□ Double logarithmic approximation (vs single-log in SW)

□ Running coupling corrections to jet quenching parameter

Liou, Mueller, Wu : arXiv:1304.7677 (Double logs in p_{\perp} -broadening) Iancu : arXiv:1403.1996 (Non-linear evolution and its DLA limit) Blaizot, Mehtar-Tani : arXiv:1403.2323 (Energy-loss and renormalization of \hat{q})

Jet modification in a medium





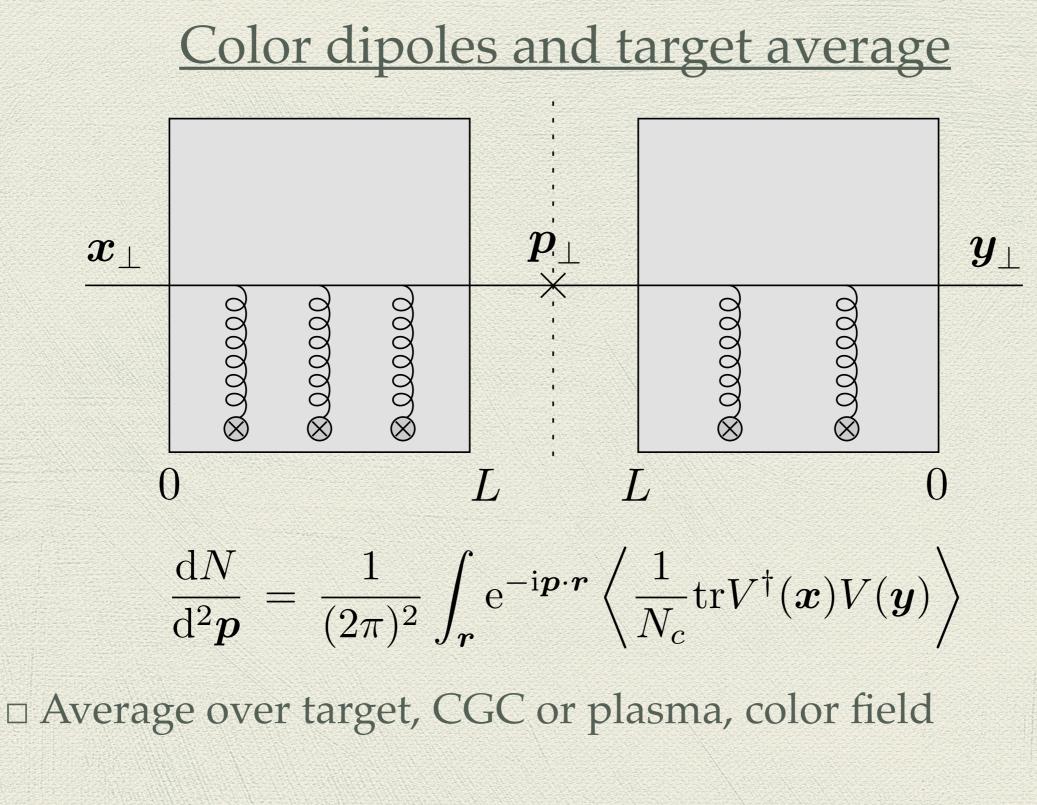
Partons typically produced in pairs after hard scattering
 Parton propagation modified in medium

p_{\perp} -broadening in SW and medium



□ High energy $\mapsto \theta \sim p_{\perp}/E \ll 1 \mapsto \text{eikonal approximation}$ □ Wilson line $V^{\dagger}(x_{\perp}) = P \exp \left[ig \int_{0}^{L} dx^{+}A^{-}(x^{+}, x_{\perp}) \right]$ □ x^{+} projectile LC time

 \Box Target RF: pA $~E_p\sim 10^7{\rm GeV},$ jet in AA $E_J\sim 10^2{\rm GeV}$ $p_\perp\sim 1\div 2{\rm GeV}$



□ Tree-level: Gaussian distribution (MV model)

Gaussian target average

 \Box Independent color charges down to $m_{\rm D} \sim gT$ or $\Lambda_{\rm QCD}$

$$\langle A_a^-(x^+, \boldsymbol{x}) A_b^-(y^+, \boldsymbol{y}) \rangle = \delta_{ab} \delta(x^+ - y^+) n_0 \gamma(\boldsymbol{x} - \boldsymbol{y})$$

□ Coulomb propagator squared $\gamma(\mathbf{k}) = \frac{g^2}{(\mathbf{k}^2 + \Lambda^2)^2}$

 \square *n*₀: constituents number density

□ Projectile dipole

$$\mathcal{S}^{(0)}(\boldsymbol{r}) = \exp\left[-g^2 C_F n_0 L \int \frac{\mathrm{d}^2 \boldsymbol{k}}{(2\pi)^2} \gamma(\boldsymbol{k}) \left(1 - \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}}\right)\right] = \exp\left[-T_{2\mathrm{g}}\right]$$

The jet quenching parameter

 \square Logarithmic contribution for small dipoles $r\Lambda \ll 1$

$$S^{(0)}(\mathbf{r}) = \exp\left[-\frac{1}{4}\,\hat{q}^{(0)}(1/\mathbf{r}^2)L\mathbf{r}^2
ight]$$

with tree-level jet quenching parameter

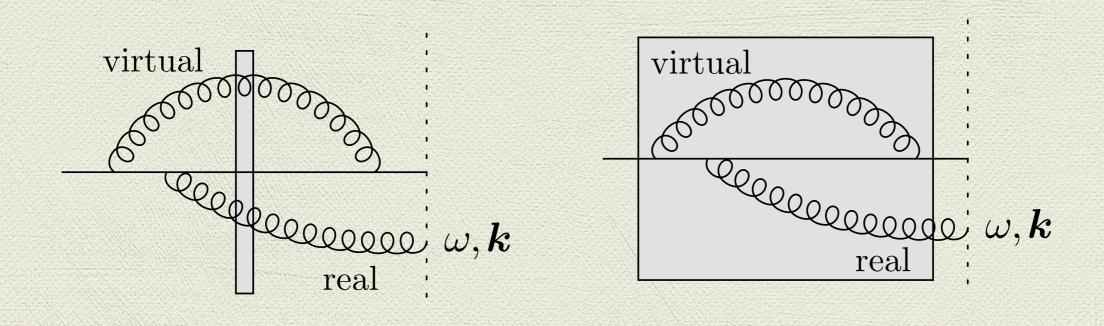
$$\hat{q}^{(0)}(Q^2) \simeq 4\pi \alpha_s^2 C_F n_0 \ln \frac{Q^2}{\Lambda^2} \sim \alpha_s \times 3D$$
 charge density

 \Box Saturation momentum: exponent of $\mathcal{O}(1)$ when $rQ_s \sim 1$

$$Q_s^2(L) = \hat{q}^{(0)}(Q_s^2) L = 4\pi \alpha_s^2 C_F n_0 L \ln \frac{Q_s^2}{\Lambda^2} \sim L \ln L$$

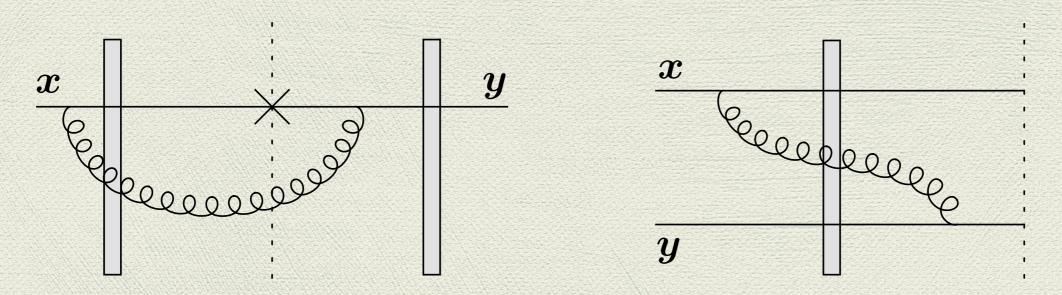
 \Box In CNM, this is $A^{1/3} \ln A$ dependence of $Q_s^2(A)$

Quantum evolution



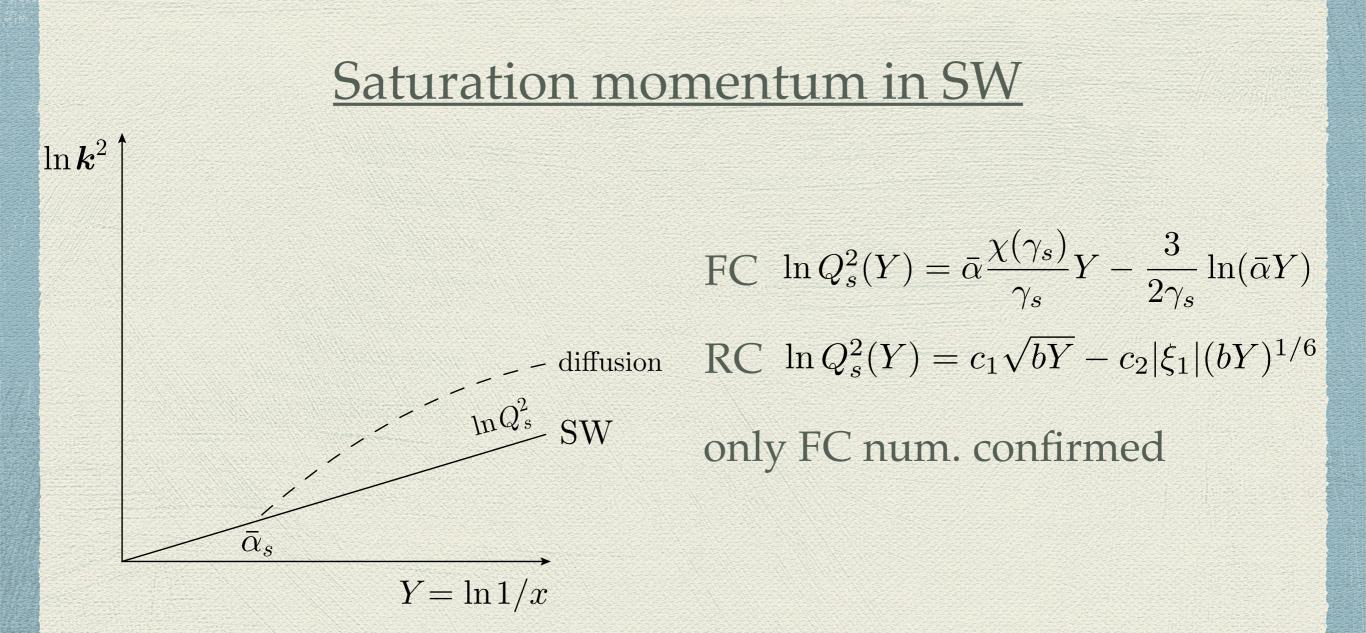
□ Quantum fluctuation has formation time $\tau = 2\omega/k^2$ □ Typical case in SW $\tau \gg L$

 $k^2 \sim Q_s^2(L) = \hat{q}L$ $\tau_{\min} = 2\omega/\hat{q}L$ $\omega \gtrsim \omega_c = \hat{q}L^2/2$ \Box In a medium $\omega \lesssim \omega_c$ typical fluctuations live inside it

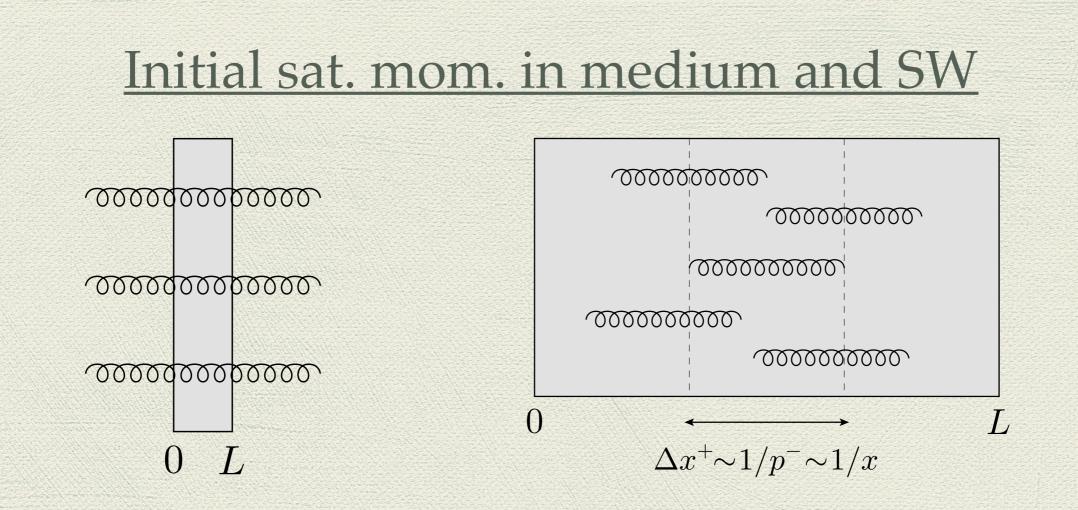


 $\Box \text{ B-JIMWLK, BK at large } N_c : \text{LL eqn in } Y \text{ (rapidity separation)}$ $\frac{\mathrm{d} \langle S_{\boldsymbol{x}\boldsymbol{y}} \rangle}{\mathrm{d}Y} = \frac{\bar{\alpha}}{2\pi} \int \mathrm{d}^2 \boldsymbol{z} \, \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{z} - \boldsymbol{y})^2} \, \langle S_{\boldsymbol{x}\boldsymbol{z}} S_{\boldsymbol{z}\boldsymbol{y}} - S_{\boldsymbol{x}\boldsymbol{y}} \rangle$

□ Non-linear: target saturation/unitarity in multiple scattering



□ Occupation numbers with $k \leq Q_s(Y)$ saturate to ~ $1/\bar{\alpha}_s$ □ Linear evolution + saturation boundary

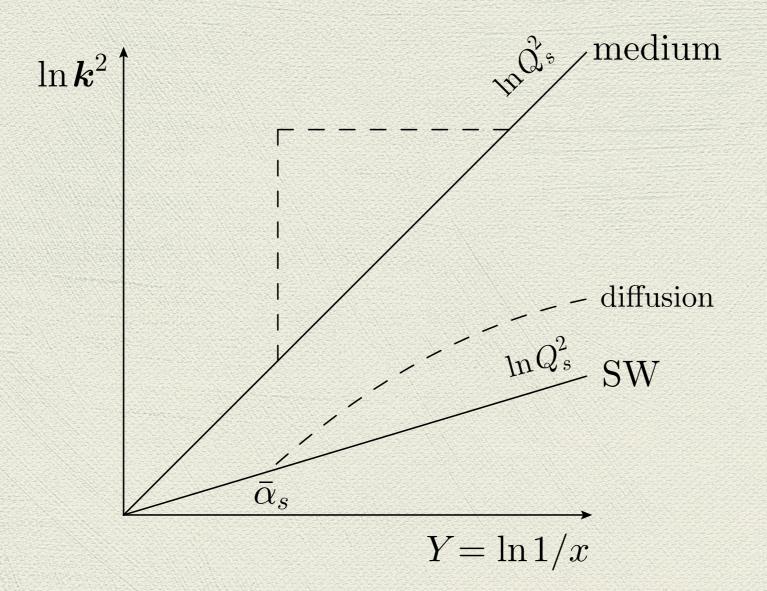


 Saturation momentum proportional to length over which gluon overlaps with its source

- \Box In SW problem $\sim L$
- $\Box \Delta x^+$: time τ for R-mover, longitudinal size for L-mover

• In medium problem $\sim 1/x$, fraction x is not that small

SW vs medium phase-space



□ SW: single log problem (BFKL)

□ Medium: symmetry in two types of logs \mapsto double log (DLA)

Double logarithms

$$\tau \frac{\mathrm{d}S(\boldsymbol{r})}{\mathrm{d}\tau} = \frac{\bar{\alpha}}{2\pi} \int \mathrm{d}^2 \boldsymbol{z} \, \frac{\boldsymbol{r}^2}{\boldsymbol{z}^2(\boldsymbol{r}-\boldsymbol{z})^2} \exp\left[-[\boldsymbol{r}^2 + (\boldsymbol{r}-\boldsymbol{z})^2]\frac{1}{4}\hat{q}^{(0)}\tau\right]$$

- First iteration in non-linear equation, no virt. for big dipoles
 Integrate time *τ* from *λ* to *L*
- $_{-}$ Integrate transverse from $\hat{q}^{(0)} au$ up to res.scale $1/r^2 \sim p^2$
- Single scattering approximation to get the second-logarithm
 $\ln(L/\lambda)\ln(p^2/\hat{q}^{(0)}\tau)$
- Absorb in definition of jet-quenching parameter

Fixed coupling

 $\Box \text{ Evolution equation for } \hat{q}(Y,\rho) = \hat{q}(\ln \tau/\lambda, \ln p^2/\hat{q}^{(0)}\lambda)$ $\hat{q}(Y,\rho) = \hat{q}^{(0)} + \bar{\alpha} \int_0^Y dY_1 \int_{Y_1}^\rho d\rho_1 \, \hat{q}(Y_1,\rho_1)$

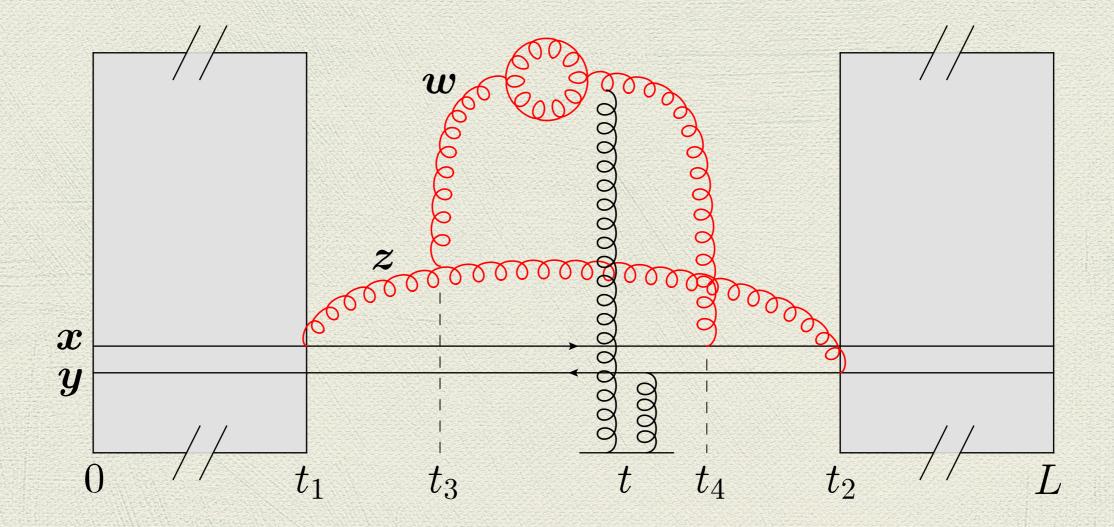
Lower limit restricts PS to single scattering

 \Box Solution for const. IC

$$\hat{q}(Y,\rho) = \hat{q}^{(0)} \left[I_0 \left(2\sqrt{\bar{\alpha}Y\rho} \right) - \frac{Y}{\rho} I_2 \left(2\sqrt{\bar{\alpha}Y\rho} \right) \right]$$

 $\Box \text{ For } \rho = Y \ (\tau = L, \ p^2 = \hat{q}^{(0)}L \) \text{ leading prefactors cancel}$ $\hat{q}_s(Y) = \hat{q}^{(0)} \ \frac{I_1(2\sqrt{\bar{\alpha}}Y)}{\sqrt{\bar{\alpha}}Y} = \hat{q}^{(0)} \ \frac{e^{2\sqrt{\bar{\alpha}}Y}}{\sqrt{4\pi} (\sqrt{\bar{\alpha}}Y)^{3/2}}$

□ Very similar to $Q_s^2(Y)$ for scattering of shockwave



Running coupling

 \Box DLA \rightarrow running coupling is leading order effect

$$\hat{q}(Y,\rho) = \hat{q}^{(0)} + b \int_0^Y dY_1 \int_{Y_1}^\rho \frac{d\rho_1}{\rho_1 + \rho_0} \,\hat{q}(Y_1,\rho_1)$$

 \Box In general $\rho_0 = \ln \left(\hat{q}^{(0)} \lambda / \Lambda^2 \right)$. For $\rho_0 = 0$

$$\hat{q}^{(1)}(Y,\rho) = \hat{q}^{(0)}bY\left(\ln\frac{\rho}{Y}+1\right),$$

$$\hat{q}^{(2)}(Y,\rho) = \hat{q}^{(0)}(bY)^2\left(\frac{1}{4}\ln^2\frac{\rho}{Y}+\frac{3}{4}\ln\frac{\rho}{Y}+\frac{3}{8}\right),$$

$$\hat{q}^{(3)}(Y,\rho) = \hat{q}^{(0)}(bY)^3\left(\frac{1}{36}\ln^3\frac{\rho}{Y}+\frac{11}{72}\ln^2\frac{\rho}{Y}+\frac{49}{216}\ln\frac{\rho}{Y}+\frac{49}{648}\right),$$

□ Series in $(bY)^n$ for $\rho = Y$, no pattern for lowest orders (Standard DLA: Only highest log-power is present)

Running coupling asymptotics

Calculate series coefficients at very high orders
 Fit analytical data

 $\ln \hat{q}_s(Y) = 4\sqrt{bY} - 3|\xi_1|(4bY)^{1/6} + \frac{1}{4}\ln Y + \kappa + \mathcal{O}(Y^{-1/6})$

 $\Box \xi_1 \simeq -2.338$, $\kappa = \text{const}$ and recall $Y = \ln(L/\lambda)$

□ Striking similarity to $\ln Q_s^2(Y)$ for scattering of shockwave Exactly same dependence, different coefficients

Should exist an analytical proof ...
 Should exist numerical proof for SW ...

Running coupling results

0.7

0.6

0.5

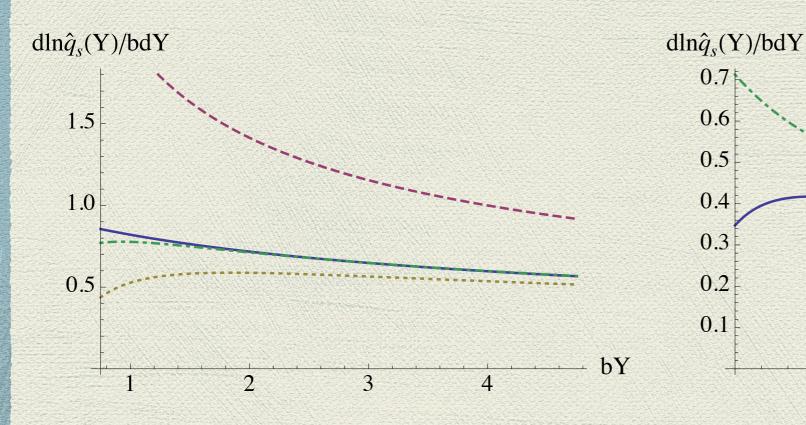
0.4

0.3

0.2

0.1

5



Truncated vs asymptotic $\rho_0 = 0$

Truncated vs asymptotic $\rho_0 = 2.3, b = 4/3$

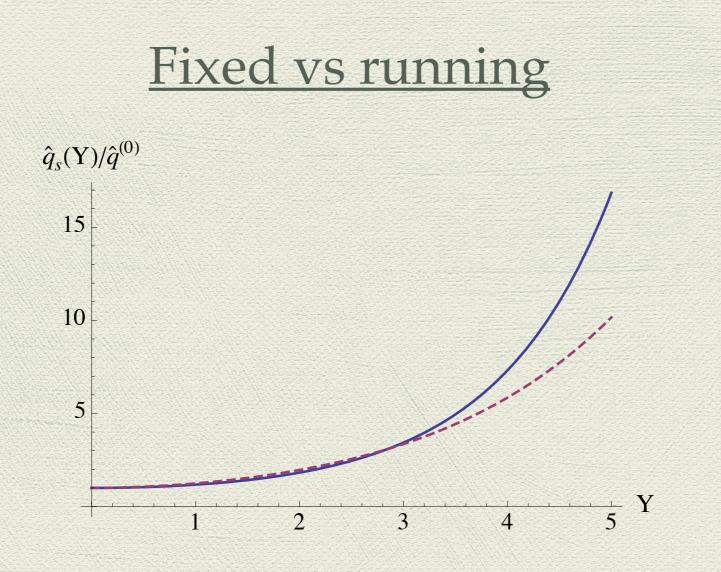
10

15

 $\frac{1}{20}$ bY

 \Box Series dominated by $n_c \sim 2\sqrt{bY}$

□ IR "cutoff" does not change (very) high *Y* asymptotics



FC vs RC, IC const. $\bar{\alpha}_s = 0.33, b = 4/3, \rho_0 = 2.3$

□ For up to three units in rapidity FC~RC

 $Y = \ln(LT) \rightarrow Y_{\max} \sim \ln(8 \text{fm} \times 500 \text{MeV}) \sim 3$

L-dependence of energy loss

 $E_{\rm loss}({\rm tree}) \propto L^2$

 $E_{\rm loss}({\rm FC}) \propto L^{2+\gamma}, \quad \gamma = 2\sqrt{\bar{\alpha}}$

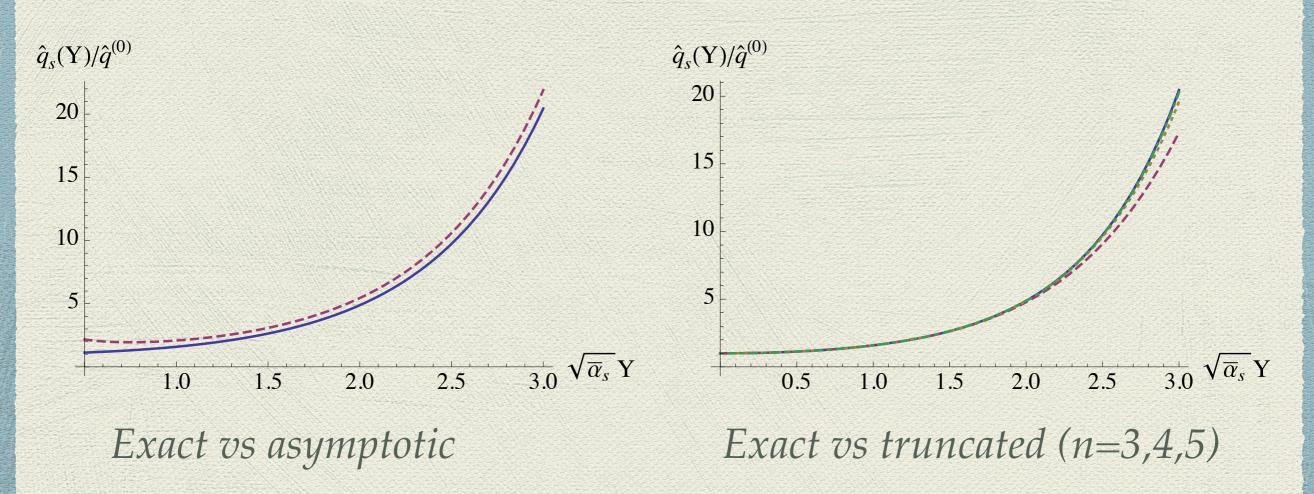
 $E_{\rm loss}({\rm RC}) \propto L^2 {\rm e}^{4\sqrt{b \ln L}}, \quad b = 12N_c/(11N_c - 2N_f)$

 $E_{\rm loss}({\rm AdS/CFT}) \propto L^3$

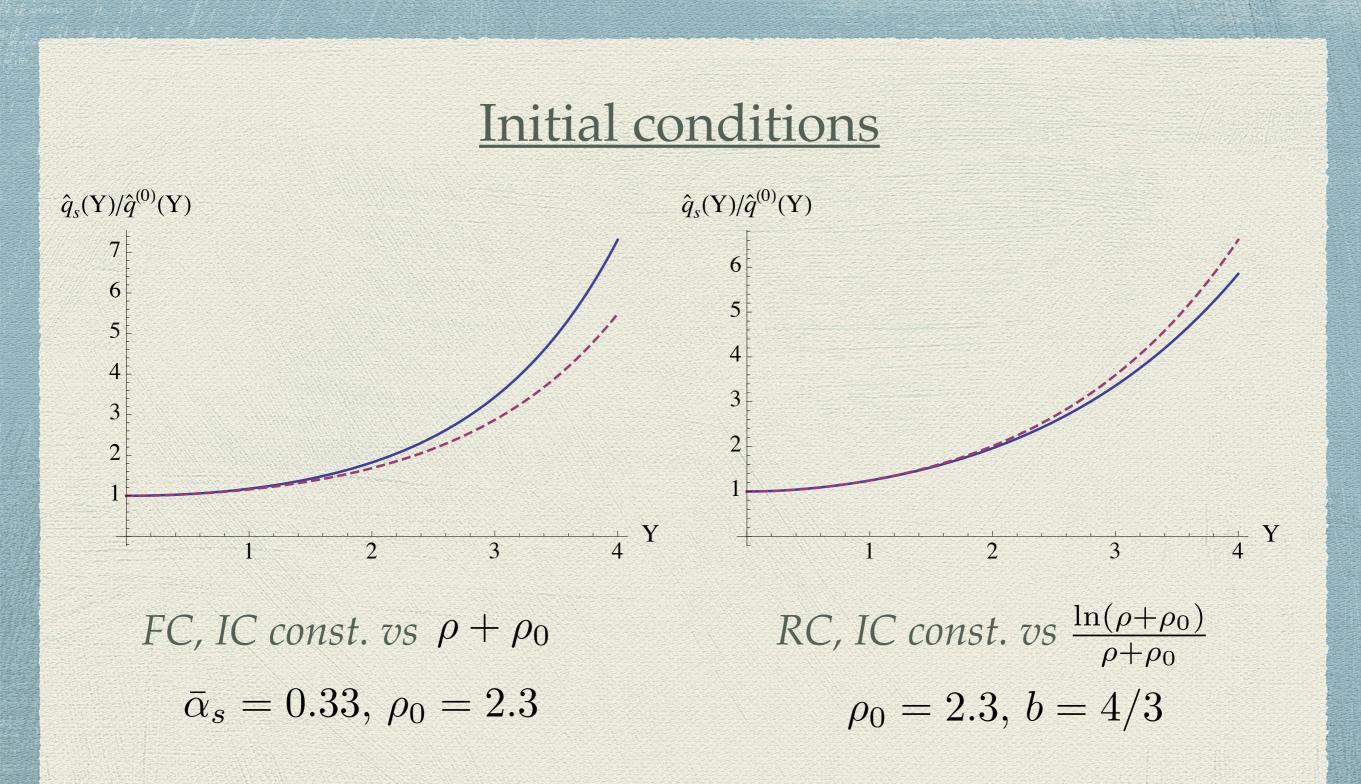
 FC interpolates the tree and AdS/CFT result
 RC in same direction, but different structure. Not conformal
 Leading asymptotics results not to be trusted. In practice: keep few terms series or fit to E_{loss}(fit) = f(L)

Conclusions

- Short-lived fluctuations redefine value of \hat{q}
- RC is leading order effect in DLA
- □ (Math of) Evolution similar to that of $\ln Q_s^2(Y)$ of a SW
- □ Universality: asymptotics independent of IC, for FC and RC
- □ An enhancement factor of ~3 for three rapidity units



Asymptotic correct down to \$\sqrt{\alpha_s}Y \sqrt{1}\$
\$n_c \sim \sqrt{\alpha_s}Y\$ terms reproduce exact result
Thus: fixed order series same with asymptotic result



 \Box IC ρ -dependence from gluon distribution and/or coupling