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E. Iancu & DNT, submitted to PRD (no answer at all yet …) [arXiv:1405.3525]



□  Double logarithmic approximation (vs single-log in SW)
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□     -broadening in shockwave and in medium at tree-level

□ Short-lived quantum fluctuations and evolution 

Outline

p?

□  Running coupling corrections to jet quenching parameter

Liou, Mueller, Wu     : arXiv:1304.7677   (Double logs in     -broadening)!
Iancu                           : arXiv:1403.1996   (Non-linear evolution and its DLA limit)!
Blaizot, Mehtar-Tani : arXiv:1403.2323   (Energy-loss and renormalization of   )̂q

p?



Jet modification in a medium
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ Partons typically produced in pairs after hard scattering

□ Parton propagation modified in medium
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ High energy ⟼                            ⟼ eikonal approximation

□ Wilson line 
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□       projectile LC time
x

+

□ Target RF: pA                          , jet in AAEp ⇠ 107GeV EJ ⇠ 102GeV

p? ⇠ 1÷ 2GeV

    -broadening in SW and mediump?



Color dipoles and target average
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.
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□ Average over target, CGC or plasma, color field 

□ Tree-level: Gaussian distribution (MV model)



Gaussian target average
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ Independent color charges down to                   or 
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The jet quenching parameter
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ Logarithmic contribution for small dipoles r⇤ ⌧ 1
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     with tree-level jet quenching parameter

□ Saturation momentum: exponent of           when  O(1) rQs ⇠ 1
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Quantum evolution
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ Quantum fluctuation has formation time   ⌧ = 2!/k2

□ Typical case in SW    ⌧ � L

k2 ⇠ Q2
s(L) = q̂L ⌧min = 2!/q̂L ! & !c = q̂L2/2

□ In a medium                 typical fluctuations live inside it  ! . !c



Dipole evolution in SW
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ B-JIMWLK, BK at large      : LL eqn in     (rapidity separation)  Nc Y

□ Non-linear: target saturation/unitarity in multiple scattering 
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Saturation momentum in SW
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

FC lnQ2
s(Y ) = ↵̄

�(�s)

�s
Y � 3

2�s
ln(↵̄Y )

RC lnQ2
s(Y ) = c1

p
bY � c2|⇠1|(bY )1/6

only FC num. confirmed

□ Occupation numbers with                      saturate to  k . Qs(Y ) ⇠ 1/↵̄s

□ Linear evolution + saturation boundary 



Initial sat. mom. in medium and SW
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ Saturation momentum proportional to length over which  
gluon overlaps with its source

□ In SW problem ⇠ L

□ In medium problem              , fraction     is not that small⇠ 1/x x

□         : time    for R-mover, longitudinal size for L-mover�x

+ ⌧



SW vs medium phase-space 
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ SW: single log problem (BFKL)

□ Medium: symmetry in two types of logs ⟼ double log (DLA)



Double logarithms
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.
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□ First iteration in non-linear equation, no virt. for big dipoles

□ Integrate time    from    to  

□ Integrate transverse from            up to res.scaleq̂(0)⌧ 1/r2 ⇠ p2

□ Single scattering approximation to get the second-logarithm

ln(L/�) ln(p2/q̂(0)⌧)

□ Absorb in definition of jet-quenching parameter

⌧ � L



Fixed coupling
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□ Evolution equation for 

□ Solution for const. IC

q̂(Y, ⇢) = q̂(0) + ↵̄
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□ Lower limit restricts PS to single scattering
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□ For              (                                 ) leading prefactors cancel⇢ = Y
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□ Very similar to              for scattering of shockwaveQ2
s(Y )

q̂(Y, ⇢) = q̂(ln ⌧/�, lnp2/q̂(0)�)

⌧ = L, p2 = q̂(0)L



Running coupling
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.



Running coupling
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ DLA → running coupling is leading order effect

q̂(Y, ⇢) = q̂(0) + b
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□ In general                                   . For                           

□ Series in            for            , no pattern for lowest orders  
(Standard DLA: Only highest log-power is present ) 
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Running coupling asymptotics
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ Calculate series coefficients at very high orders  
    Fit analytical data

ln q̂s(Y ) = 4
p
bY � 3|⇠1|(4bY )1/6 + 1

4 lnY + +O�
Y �1/6

�

□                                            and recall ⇠1 ' �2.338,  = const Y = ln(L/�)

□ Striking similarity to                  for scattering of shockwave  
Exactly same dependence, different coefficients

lnQ2
s(Y )

□  Should exist an analytical proof …  
    Should exist numerical proof for SW …



Running coupling results
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

Truncated vs asymptotic          

□ Series dominated by
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□ IR “cutoff” does not change (very) high      asymptotics Y



Fixed vs running
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

FC vs RC, IC const.          

□ For up to three units in rapidity FC~RC
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Y = ln(LT ) ! Y
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L-dependence of energy loss
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

E
loss

(tree) / L2

E
loss

(FC) / L2+� , � = 2
p
↵̄

E
loss

(RC) / L2e4
p
b lnL, b = 12Nc/(11Nc � 2Nf )

E
loss

(AdS/CFT) / L3

□ FC interpolates the tree and AdS/CFT result
□ RC in same direction, but different structure. Not conformal
□ Leading asymptotics results not to be trusted.  

In practice: keep few terms series or fit to E
loss

(fit) = f(L)



Conclusions
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

□ Short-lived fluctuations redefine value of q̂

□ (Math of) Evolution similar to that of                  of a SWlnQ2
s(Y )

□ An enhancement factor of ~3 for three rapidity units

□ Universality: asymptotics independent of IC, for FC and RC

□ RC is leading order effect in DLA



Fixed coupling results
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.
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Exact vs asymptotic                         Exact vs truncated (n=3,4,5)

□ Asymptotic correct down to 
p
↵̄sY ⇠ 1

□                       terms reproduce exact resultnc ⇠
p
↵̄sY

□ Thus: fixed order series same with asymptotic result



Initial conditions
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□ Classical average :□ Leads to dipole (BK) equation. Similarly for quadrupole, etc.

FC, IC const. vs           RC, IC const. vs             

□ IC   -dependence from gluon distribution and/or coupling
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