Perturbative Infra-red physics
of Yang-Mills theories

ANDREAS TRESMONTANT!"

' Astro-Particule et Cosmologie, Université Denis Diderot, “Laboratoire de Physique Théorique de la Matiere Condensée, Université Pierre et Marie Curie

ABSTRACT

We investigate the infra-red properties of Yang-Mills correlators in a novel Gribov-ambiguity-free class of non-linear covariant gauges. These family of one-parameter gauges (indexed by & below) are continuously connected
to the well-studied Landau gauge, and provide a non-perturbative generalization of the Curci-Ferrari-Delbourgo-Jarvis gauges, that might be amenable to lattice simulations. We explicitly compute at one-loop order in
perturbation theory the gluon and ghost propagator, as well as the renormalization group flows, down to the deep infra-red regime. In particular, we show that there exists infra-red safe trajectories with no Landau pole, we
find that both the gluon and ghost propagators develop a mass gap and that even 1in non-Landau gauge the gluon propagator is transverse.

MOTIVATION

Lifting the Gribov ambiguity:

It 1s well known that the standard Faddeev-
Popov gauge fixing procedure, used to
quantize Yang-Mills theories, 1s plagued by
the existence of Gribov copies. Recently, a
novel approach was proposed in [1] based on
averaging over the Gribov copies, leading
to a gauge-fixed Yang-Mills action free of
Gribov ambiguities and with effectively
massive gluons. Firsts studies were per-
formed in the particular case of the Landau
gauge within this gauge-fixed action.

Landau gauge:

e There exists infra-red safe trajecto-
ries allowing perturbative develop-
ment down to the deep infra-red
regime. See left figure, m = % with
m the gluon mass, p the RG scale, g
the coupling constant.

e One-loop perturbative computations
of ghost and gluon propagators are
in remarkable agreement with lattice
simulations. See right figure, G(p) is

rows point toward the infra-red [1].

the gluon propagator.

One-loop RG flow in the plane (m, g). The ar-
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Blue points: lattice results [4].
Red curve: one-loop perturbative computations [3].

These exciting results motivate the study outside the Landau gauge in order to investigate the possible
gauge dependent effects 1n the infra-red.

GLUON AND GHOST PROPAGATORS COMPUTED AT ONE-LOOP

We display the gluon and ghost propagators computed at one-loop order in perturbation theory with renormalization group improvement. The computations are

INFRA-RED SAFE TRAJECTORIES

RG initial conditions: po = 1 Gev, g(uo) = 3.7.

performed within these new one-parameter, £, gauges (see below). We defined the RG initial conditions at ;1o = 1 Gev and we show our results for various & (o) = &;.
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THE GAUGE FIXING PROCEDURE

Gauge condition:
In order to fix the gauge, we consider the functional
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where 7 1s an arbitrary NV X N matrix field and Ag 1s the gauge trans-
form of A, with a gauge element U € SU(/N). We define our gauge
condition as (one of) the extrema of H with respect to U.

This 1s a slight generalization of the Landau gauge case (recovered for
n = 0, where many lattice studies are performed [5]) and therefore
standard extemization techniques, e.g. the Los Alamos algorithm [6],
might be applicable to the present proposal, allowing lattice studies
outside the Landau gauge.

Following the standard Faddeev-Popov procedure, and averaging over
1 with a weight

2
Pln] = N exp (—%/m%) ,

leads to a gauge-fixing action:
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that corresponds to the Curci-Ferrari-Delbourgo-Jarvis gauges.
However, these gauge-fixings suffer from Gribov ambiguities due to the
presence of Gribov copies that correspond to extrema U; = U;[A, ] of
the functional H|A, n, U] for given A and .

RENORMALIZATION

The previous gauge-fixed Lagrangian was shown to
be renormalizable to all orders of perturbation the-
ory [2] independently of the way the limit n — O,
induced by the replica, 1s taken.

We therefore have considered renormalization
schemes in which

nBo = Zmzm2 Eo = Z¢ERN

such that the two tree level renormalized square
masses survive to the n — 0 limit. As a con-
sequence, the gluon propagator remains transverse
even in non-Landau gauge, and the theory presents
infra-red safe renormalization group trajectories.

Lifting the Gribov ambiguities:

We define the vacuum expectation values for any operator O[A| from a
two-steps averaging procedure: (O[A]).

(O] A]) is an average over Gribov copies and over the "noise" field 7:
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where the sums run over all Gribov copies, s(i) is the sign of the
functional determinant of the Faddeev-Popov operator evaluated at
U = U; and [y is a free parameter which controls the lifting of degen-
eracy between Gribov copies according to the value of the functional
HIA, 0, U,.

In particular we have for a gauge i1nvariant operator that:

(OinylA]) = Ojpy[A4].

nv

This average over the Gribov copies can be cast into a functional inte-
gral formulation
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that involves the Curci-Ferrari action (see below), Scr[A, V.
Using a super matrix field V

(OlA]) (1)

V(z,0,8) = exp {igo (éc 40+ éeﬁ) } U,

defined on a super space parametrized by two Grassmannian coordi-
nates 6 = (9, 9) with metric g™?" defined as ¢*° = —¢%% = 8,00 —1,
the Curci-Ferrari action takes the very compact form:

1
Scr[A, V] = 9_2/ tr {DMVTDMV + %OgMNaNVTaMV},
0Jz,0

PERSPECTIVES

The formulation of the gauge condition derived as an extremization of the functional H 1s a slight gener-
alization of the one routinely employed in the Landau gauge where lattice simulations are performed. We
therefore expect (see [2]), that the present proposal is amenable to lattice simulations . This would provide
non perturbative computations outside the Landau gauge to which we could compare our predictions.

On the other hand, our two-steps averaging procedure allows the computations of new quantities such that
correlations between different gauge orbits

[AAY + [ADA) + ...

A)4) =

that involve non trivial correlators of the super-symmetric fields. We thus believe that information on Gribov
copies might be encoded 1n the super-symmetric sector of our theory, which is currently under studies.

Replica :

Once the Gribov degeneracy has been lifted for each individual gauge
field configuration, we average over the latter with the Yang-Mills
weight (denoted by an overall bar):

_ DA (O[A]) e Syl
B fDA e—SyMI[A] '

O1A])

Note however that the denominator in Eq.(1) depends explicitly on the
field configuration A, and therefore it is a non trivial task to formulate
this two-steps average (O|A]) as a functional integral with one local
action.

This can be efficiently done using the replica trick, that 1s making use
of the identity
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The resulting Lagrangian is the one we used for our perturbative com-

putations:
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In particular at the bare level, each replica contributes to the gluon
square mass a factor By leading to an effective gluon square mass n3g.
The ghosts are effectively massive outside the Landau gauge, with a tree
level square mass &p 5o
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