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ABSTRACT

We investigate the infra-red properties of Yang-Mills correlators in a novel Gribov-ambiguity-free class of non-linear covariant gauges. These family of one-parameter gauges (indexed by ξ below) are continuously connected
to the well-studied Landau gauge, and provide a non-perturbative generalization of the Curci-Ferrari-Delbourgo-Jarvis gauges, that might be amenable to lattice simulations. We explicitly compute at one-loop order in
perturbation theory the gluon and ghost propagator, as well as the renormalization group flows, down to the deep infra-red regime. In particular, we show that there exists infra-red safe trajectories with no Landau pole, we
find that both the gluon and ghost propagators develop a mass gap and that even in non-Landau gauge the gluon propagator is transverse.

MOTIVATION

Lifting the Gribov ambiguity:
It is well known that the standard Faddeev-
Popov gauge fixing procedure, used to
quantize Yang-Mills theories, is plagued by
the existence of Gribov copies. Recently, a
novel approach was proposed in [1] based on
averaging over the Gribov copies, leading
to a gauge-fixed Yang-Mills action free of
Gribov ambiguities and with effectively
massive gluons. Firsts studies were per-
formed in the particular case of the Landau
gauge within this gauge-fixed action.

Landau gauge:

• There exists infra-red safe trajecto-
ries allowing perturbative develop-
ment down to the deep infra-red
regime. See left figure, m̃ = m

µ
with

m the gluon mass, µ the RG scale, g
the coupling constant.

• One-loop perturbative computations
of ghost and gluon propagators are
in remarkable agreement with lattice
simulations. See right figure, G(p) is
the gluon propagator.

One-loop RG flow in the plane (m̃, g). The ar-
rows point toward the infra-red [1].

Blue points: lattice results [4].
Red curve: one-loop perturbative computations [3].

These exciting results motivate the study outside the Landau gauge in order to investigate the possible
gauge dependent effects in the infra-red.

INFRA-RED SAFE TRAJECTORIES

RG initial conditions: µ0 = 1 Gev, g(µ0) = 3.7.
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gH ΜL Coupling constant gHΜL

• No Landau pole

GLUON AND GHOST PROPAGATORS COMPUTED AT ONE-LOOP

We display the gluon and ghost propagators computed at one-loop order in perturbation theory with renormalization group improvement. The computations are
performed within these new one-parameter, ξ, gauges (see below). We defined the RG initial conditions at µ0 = 1 Gev and we show our results for various ξ(µ0) ≡ ξi.
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GT HpL Transverse Gluon propagator GT HpL Gluon propagator:

• Transverse even in non-Landau
gauge

• Massive

Ghosts propagator

• Develops mass gap ∝ ξ
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Ggh HpL Ghost propagator Ggh HpL

THE GAUGE FIXING PROCEDURE

Gauge condition:
In order to fix the gauge, we consider the functional

H[A, η, U ] =

∫
x

tr
[(
AUµ

)2

+
U†η + η†U

2

]
where η is an arbitrary N ×N matrix field and AUµ is the gauge trans-
form of Aµ with a gauge element U ∈ SU(N ). We define our gauge
condition as (one of) the extrema ofH with respect to U .
This is a slight generalization of the Landau gauge case (recovered for
η = 0, where many lattice studies are performed [5]) and therefore
standard extemization techniques, e.g. the Los Alamos algorithm [6],
might be applicable to the present proposal, allowing lattice studies
outside the Landau gauge.

Following the standard Faddeev-Popov procedure, and averaging over
η with a weight

P[η] = N exp

(
− g2

0

4ξ0

∫
x

tr η†η
)
,

leads to a gauge-fixing action:

SCFDJ[A, c, c̄, h] =

∫
x

{
∂µc̄

aDµc
a + iha∂µA

a
µ

+ ξ0

[
(ha)2

2
− g0

2
fabcihac̄bcc− g

2
0

4

(
fabcc̄bcc

)2
]}

that corresponds to the Curci-Ferrari-Delbourgo-Jarvis gauges.
However, these gauge-fixings suffer from Gribov ambiguities due to the
presence of Gribov copies that correspond to extrema Ui ≡ Ui[A, η] of
the functionalH[A, η, U ] for given A and η.

Lifting the Gribov ambiguities:
We define the vacuum expectation values for any operatorO[A] from a
two-steps averaging procedure: 〈O[A]〉.
〈O[A]〉 is an average over Gribov copies and over the "noise" field η:

〈O[A]〉 =

∫
DηP[η]

∑
iO[AUi ]s(i)e−β0H[A,η,Ui]∫

DηP[η]
∑
i s(i)e

−β0H[A,η,Ui]
,

where the sums run over all Gribov copies, s(i) is the sign of the
functional determinant of the Faddeev-Popov operator evaluated at
U = Ui and β0 is a free parameter which controls the lifting of degen-
eracy between Gribov copies according to the value of the functional
H[A, η, Ui].
In particular we have for a gauge invariant operator that:〈
Oinv[A]

〉
= Oinv[A].

This average over the Gribov copies can be cast into a functional inte-
gral formulation

〈O[A]〉 =

∫
DV O[AU ] e−SCF[A,V]∫
DV e−SCF[A,V]

, (1)

that involves the Curci-Ferrari action (see below), SCF[A,V].
Using a super matrix field V

V(x, θ, θ̄) = exp
{
ig0

(
θ̄c+ c̄θ + θ̄θĥ

)}
U,

defined on a super space parametrized by two Grassmannian coordi-
nates θ =

(
θ, θ̄
)

with metric gMN defined as gθ̄θ = −gθθ̄ = β0θ̄θ−1,
the Curci-Ferrari action takes the very compact form:

SCF[A,V]=
1

g2
0

∫
x,θ

tr
{
DµV†DµV +

ξ0
2
gMN∂NV†∂MV

}
,

Replica :
Once the Gribov degeneracy has been lifted for each individual gauge
field configuration, we average over the latter with the Yang-Mills
weight (denoted by an overall bar):

〈O[A]〉 =

∫
DA 〈O[A]〉 e−SYM[A]∫
DAe−SYM[A]

.

Note however that the denominator in Eq.(1) depends explicitly on the
field configuration A, and therefore it is a non trivial task to formulate
this two-steps average 〈O[A]〉 as a functional integral with one local
action.
This can be efficiently done using the replica trick, that is making use
of the identity

1∫
DV e−SCF[A,V]

= lim
n→0

∫ n−1∏
k=1

(
DVk e−SCF[A,Vk]

)
.

The resulting Lagrangian is the one we used for our perturbative com-
putations:

L =
1

4

(
F aµν

)2
+ ∂µc̄

aDµc
a+ β0

(
1

2
(Aaµ)2 + ξ0c̄

aca
)

+iha∂µA
a
µ

+ξ0

[
(ha)2

2
− g0

2
fabcihac̄bcc− g

2
0

4

(
fabcc̄bcc

)2
]

+
1

g2
0

n∑
k=2

∫
θk

tr
{
DµV†kDµVk +

ξ0
2
gMN∂NV†k∂MVk

}
︸ ︷︷ ︸

LSUSY

.

In particular at the bare level, each replica contributes to the gluon
square mass a factor β0 leading to an effective gluon square mass nβ0.
The ghosts are effectively massive outside the Landau gauge, with a tree
level square mass ξ0β0

RENORMALIZATION

The previous gauge-fixed Lagrangian was shown to
be renormalizable to all orders of perturbation the-
ory [2] independently of the way the limit n → 0,
induced by the replica, is taken.
We therefore have considered renormalization
schemes in which

nβ0 = Zm2m2 ξ0 = ZξξRn

such that the two tree level renormalized square
masses survive to the n → 0 limit. As a con-
sequence, the gluon propagator remains transverse
even in non-Landau gauge, and the theory presents
infra-red safe renormalization group trajectories.

PERSPECTIVES

The formulation of the gauge condition derived as an extremization of the functional H is a slight gener-
alization of the one routinely employed in the Landau gauge where lattice simulations are performed. We
therefore expect (see [2]), that the present proposal is amenable to lattice simulations . This would provide
non perturbative computations outside the Landau gauge to which we could compare our predictions.

On the other hand, our two-steps averaging procedure allows the computations of new quantities such that
correlations between different gauge orbits

〈A〉 〈A〉 = 〈AA〉+ 〈A∂Λ〉+ ...

that involve non trivial correlators of the super-symmetric fields. We thus believe that information on Gribov
copies might be encoded in the super-symmetric sector of our theory, which is currently under studies.
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