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Inflation 

•  The interpretation of modern Cosmological observables points to a 
stage of accelerating expansion in the very early Universe. Planck 
(Talks: Lesgourgues, Enqvist, Hindmarsh, … ) 

•  Standard dynamics:  
•  Inflation from classically slow-rolling homogeneous field: inflaton. 
•  CMB from free, light scalar field modes in deSitter space vacuum, freezing in semi-

instantaneously at horizon crossing. 

•  New observables: 
•  Non-gaussianity (bi-spectrum, tri-spectrum, spikes, …). 
•  Scale dependence beyond power law (spectral index, running, running of 

running…). 
•  Efolds with precision +/- 10. 

•  But: Inflaton is an interacting quantum field. 



Classical slow-roll inflation 
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- Homogeneous field in  
FRW background. 
- Friedmann equations. 
 
 
- If H is roughly constant 
- If kinetic energy is 
much smaller than 
potential energy 
 
         ”Slow roll” inflation. 
 
Realized for certain V 
with certain initial 
conditions for the field. 
 
Slow-roll works if  
V = V = V.  

ds2 = dt2 � a2(t)dx2
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What we all know, but rarely state. 
•  The ”inflaton” is really the mean-field (1-point function) of a quantum 

degree of freedom (fundamental scalar field, composite order 
parameter, …).  

•  The ”potential” V is really the quantum effective potential, computed 
to some order in some expansion. 

•  Degree of freedom displaced from potential minimum          inflation. 

�̄(t) ⌘ h�̂(x, t)i
V [�̄] ⌘ Ve↵ [�̄]



Semi-classical approximation 
•  Can’t quantize gravity:  

treat as classical FRW. 
•  Can quantize scalar in 

that background: treat 
quantum. 

•  Solve for the 
vacuum… 

•  …compute the 
renormalized energy-
momentum tensor.  
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Vacuum? (At least) three options: 
 
-  Minkowski space 
-  Expansion around H = 0 (adiabatic, WKB). 

-  Parker, Toms (70’, 80’), …, AT, Markkanen. 
-  Expansion around H = constant (slow-roll). 

-  Boyanovski, De Vega, …, Serreau, Gautier, AT, Herranen, Markkanen,  
-  Also Garbecht, Prokopec, … 

 

V e↵ [�̄] 6= V e↵ [�̄] 6= V e↵ [�̄]In general:                                                           No exact slow-roll formalism.  



Near de Sitter: 1PI 
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Massless, de Sitter limit           IR divergence. Must resum. 



Near de Sitter: Hartree/2PI 
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IR divergence gone! Self-consistent mass is generated even for ”massless” limit. 
(See also Serreau, Sloth, Beneke, …) 



Resummed Friedmann equations 

V ['] 6= W2PI = W2PI

For minimal coupling to gravity: Partial slow-roll formulation: 
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Corrections to the CMB 
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Corrections from the dynamics of H and the mean field;  
and from the self-consistent interacting spectrum 



• A cosmologist would say: 
•  Hang on! Scalar field fluctuations mix with scalar metric 

perturbations.  

•  Should quantize the single physical degree of freedom (in a gauge/ 
gauge invariant variable).  

• A particle physicist would say: 
•  Hang on! In (near) Minkowski space at low energies, we can 

neglect metric fluctuations and just quantize. 

•  The semi-classical approximation must be some low-energy limit of 
something.  

Beyond semi-classical? 
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In Newtonian gauge 

E = B = 0, A =  , 2M2
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Conclusion 
•  We can compute quantum dynamics in slow-roll spacetimes. 
•  Without resummation: ok, but massless de Sitter limit IR 

divergent. 
•  With resummation: IR divergence becomes interesting IR 

physics. (As for dS, see talks by Serreau, Gautier) 
•  Still must be cautious with SR truncation. 
•  Slow-roll formalism partly available (at this order). 
•  Difficult to generalize beyond 2PI/LO(?) (Gautier/Serreau). 
•  Corrections to CMB negligible for inflaton. Substantial for 

curvaton(?) 
•  Under consideration: Range of validity of semi-classical 

approximation as low-energy limit of quantized scalar-gravity 
theory.  


