Spacetime symmetries of the Quantum Hall Effect

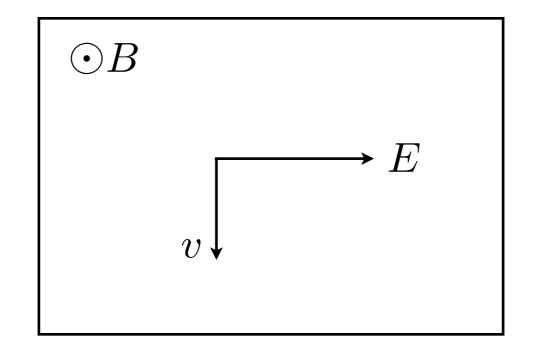
Dam Thanh Son (University of Chicago) SEW14

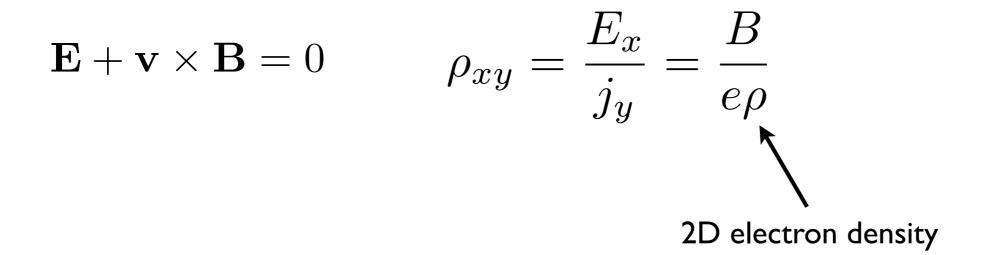
Siavash Golkar, Matt Roberts, DTS, arXiv:1403.4279 DTS arXiv:1306.0638

Plan

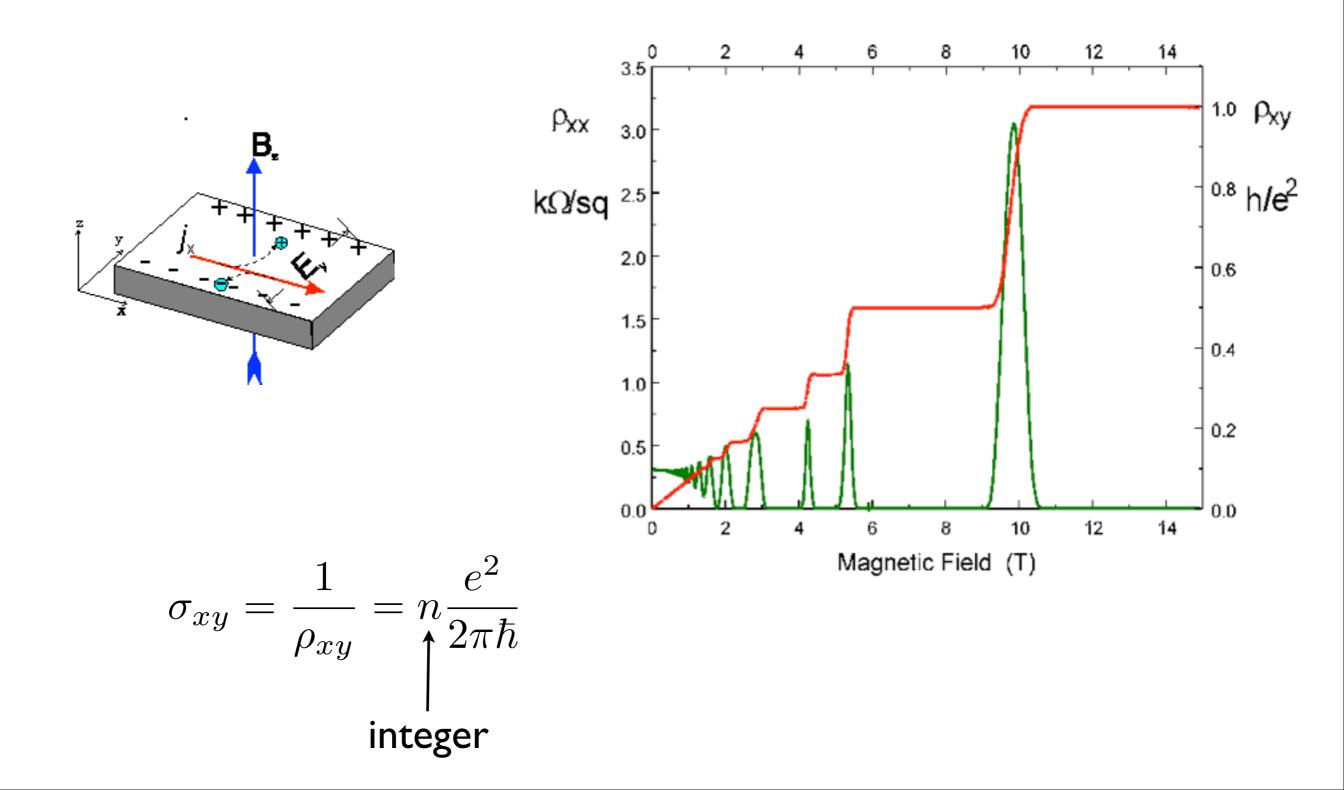
- Review of quantum Hall physics
- Relativistic QHE
 - new Chern-Simons term
- Symmetries
- Newton-Cartan geometry

Classical Hall effect

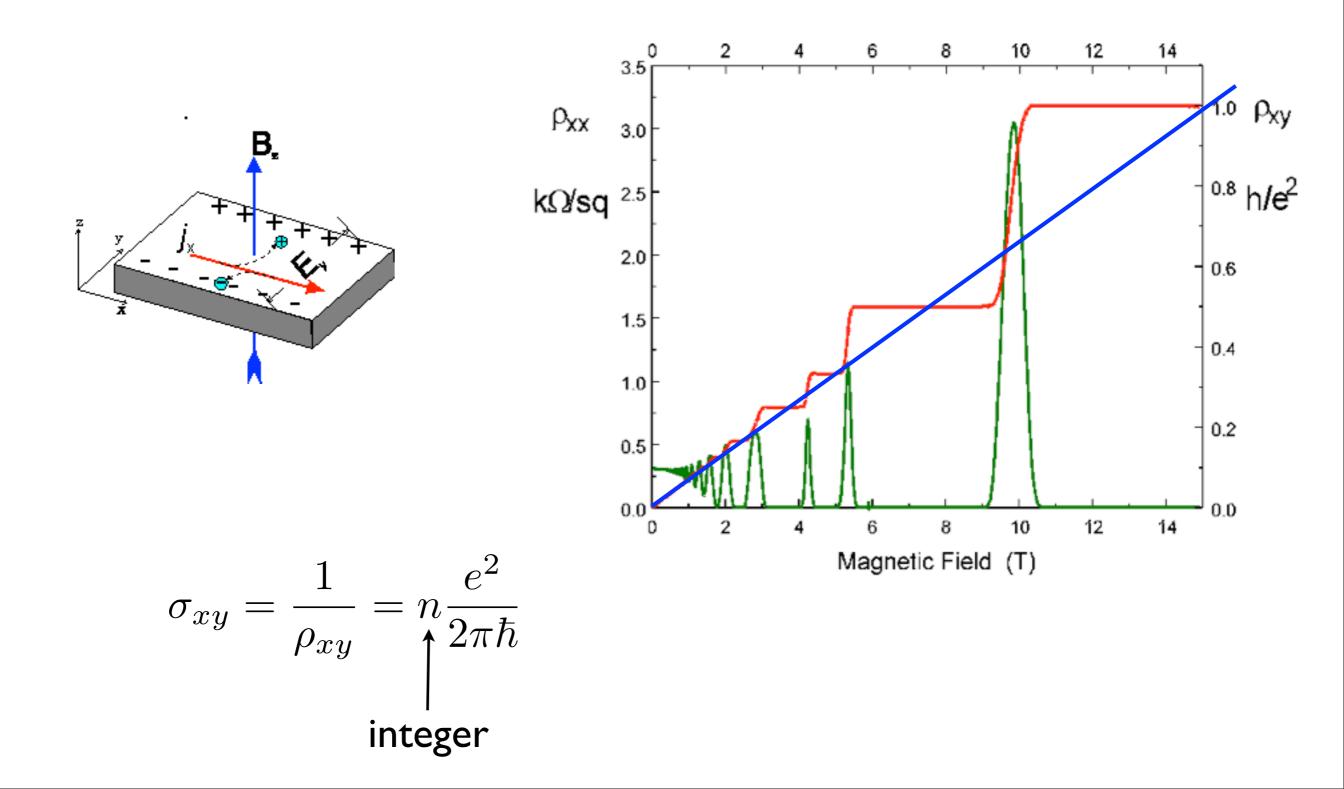




Quantum Hall effect

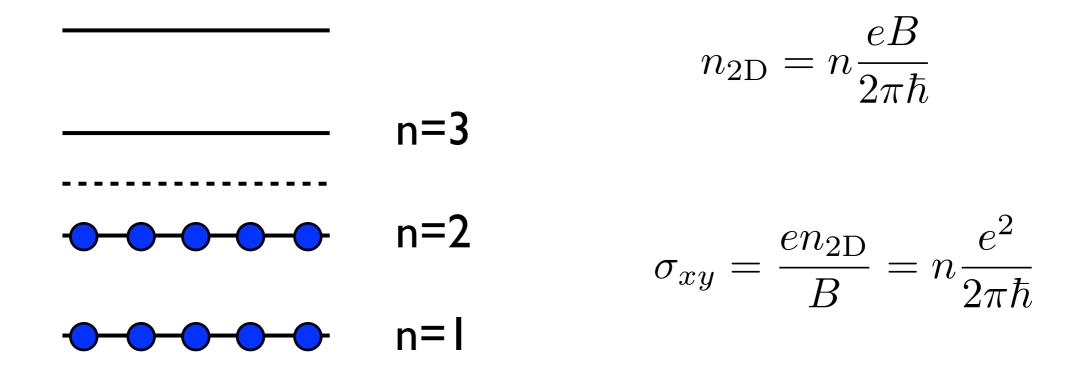


Quantum Hall effect



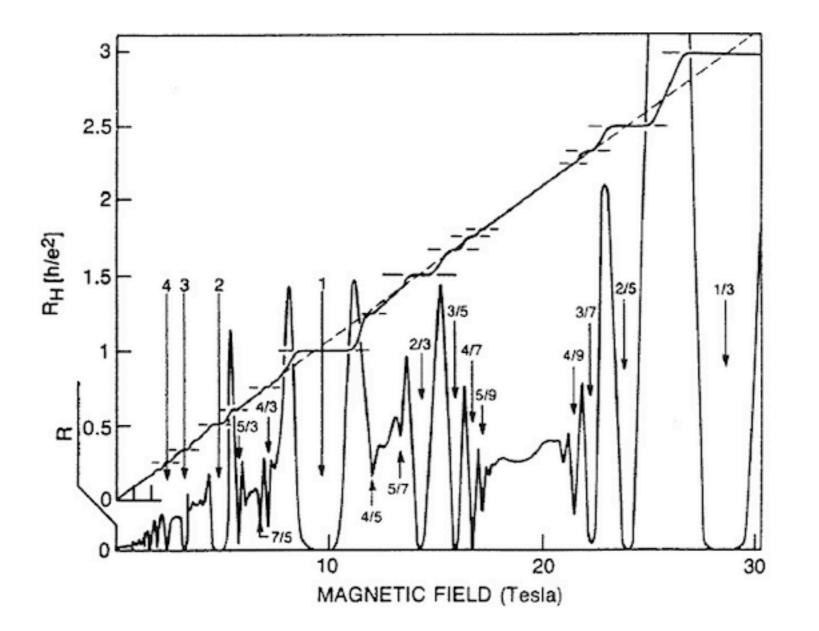
Integer quantum Hall state

• electrons filling n Landau levels



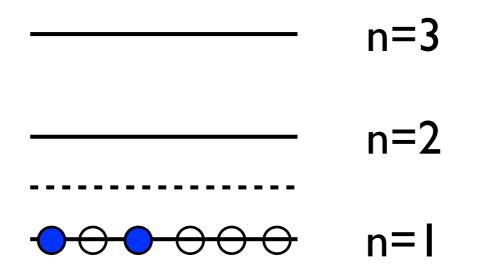
Electrons above filled Landau levels: localized by defects

Fractional QH effect



$$\sigma_{xy} = \frac{p}{q} \frac{e^2}{2\pi\hbar}$$

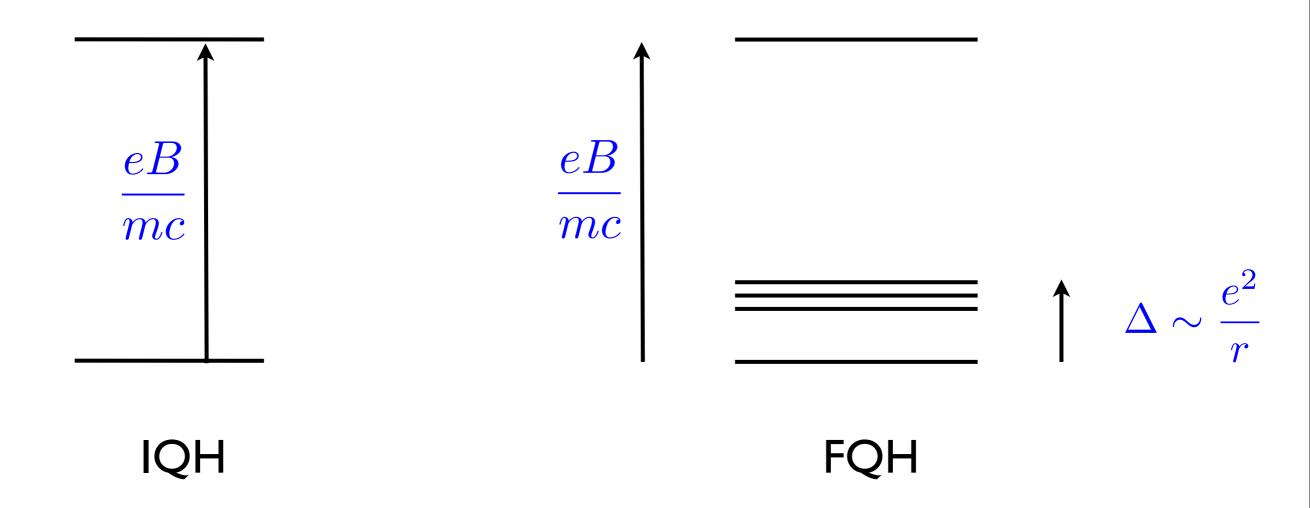
Fractional quantum Hall state



Without interactions, ground state has huge degeneracy Interactions somehow lift the degeneracy, make system gapped at particular values of the filling factor

$$\nu = \frac{n}{B/2\pi} \qquad \qquad \nu = \frac{1}{3}, \frac{1}{5}, \cdots$$

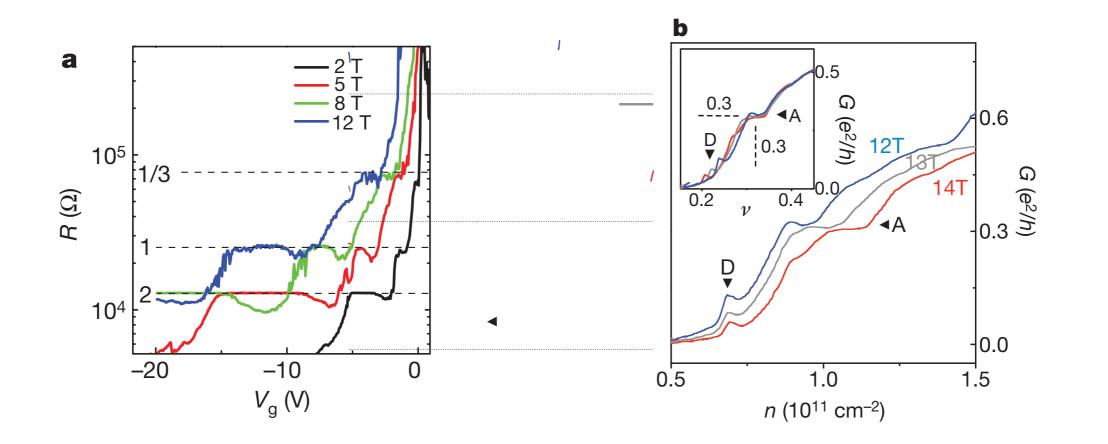
Energy scales



Interesting limit: eB/mc >> Δ (m \rightarrow 0 limit) only lowest Landau level (LLL) states survives

No small parameter

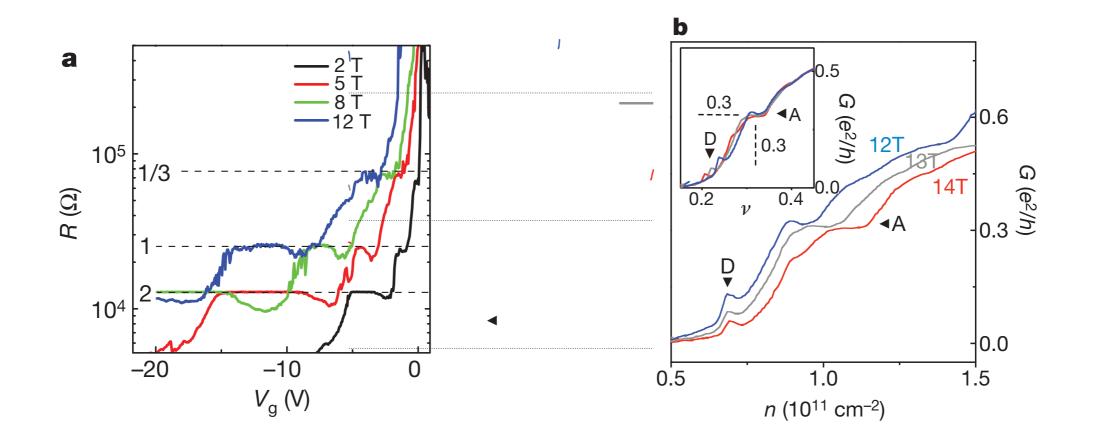
QHE in graphene



Du et al, Nature 492, 192 (2009)

Bolotin et al, Nature 492, 192 (2009)

QHE in graphene



Du et al, Nature 492, 192 (2009)

Bolotin et al, Nature 492, 192 (2009)

We will use graphene as a training ground (review of graphene: Semenoff's talk)

Relativistic QH effect

- Consider relativistic fermions in a magnetic field
- What is the low-energy effective theory of the quantum Hall states?
- gap: no low-energy degree of freedom
- local effective action

 $S = S_{\text{eff}}[A_{\mu}, g_{\mu\nu}]$

Relativistic invariance

• The effective theory must be relativistically invariant

$$Z[A_{\mu}] = \int D\psi \, D\bar{\psi} \, \exp(iS[A_{\mu},\psi,\bar{\psi}])$$

$$A_{\mu} \to A'_{\mu} \qquad \qquad S_{\text{eff}}[A_{\mu}] = S_{\text{eff}}[A'_{\mu}]$$

In the same way the effective action must be generalcoordinate invariant

Power counting

- The effective action can be expanded in powers of fields and of derivatives
- To organize the expansions, we give count fields as different powers of momentum
- One possible scheme is

$$F_{\mu\nu} = O(p^0) \qquad \qquad A_{\mu} = O(p^{-1})$$
$$g_{\mu\nu} = O(p^0)$$

Order $O(p^{-1})$

• One term at order O(p⁻¹)

$$S = \frac{\nu}{4\pi} \int d^3x \,\epsilon^{\mu\nu\lambda} A_\mu \partial_\nu A_\lambda$$

Encodes information about Hall conductivity

$$j^{\mu} = \frac{\delta S}{\delta A_{\mu}} = \frac{\nu}{4\pi} \epsilon^{\mu\nu\lambda} F_{\nu\lambda}$$
$$J_{y} = \sigma_{xy} E_{x} \qquad \sigma_{xy} = \frac{\nu}{2\pi} \frac{e^{2}}{\hbar}$$

Order O(p⁰)

• At order O(p⁰) $F_{\mu\nu}^2$

We can instead use b and u^{μ}

$$bu^{\mu} = \frac{1}{2} \varepsilon^{\mu\nu\lambda} F_{\nu\lambda} \qquad b = \left(\frac{1}{2} F_{\mu\nu} F^{\mu\nu}\right)^{1/2}$$
$$u^{\mu} u_{\mu} = -1$$

$$S = \dots - \int d^3x \sqrt{-g} \,\epsilon(b)$$

€(b): energy density as function of magnetic field

Order O(p)

 From b and u^µ it seems that the only term to order O(p) that one can form is

$$S = \dots + \int d^3x \, f(b) \epsilon^{\mu\nu\lambda} u_{\mu} \partial_{\nu} u_{\lambda}$$

f(b) determines by the dynamics But there is another term to O(p) order

Topological current

• Flat space: identically conserved current $u^{\mu}u_{\mu} = -1$

$$J^{\mu} = \varepsilon^{\mu\nu\lambda} \varepsilon^{\alpha\beta\gamma} \, u_{\alpha} \, \partial_{\nu} u_{\beta} \, \partial_{\lambda} u_{\gamma} \qquad \qquad \partial_{\mu} J^{\mu} = 0$$

In curved space

$$J^{\mu} = \varepsilon^{\mu\nu\lambda} \varepsilon^{\alpha\beta\gamma} u_{\alpha} \left(\nabla_{\nu} u_{\beta} \nabla_{\lambda} u_{\gamma} - \frac{1}{2} R_{\nu\lambda\beta\gamma} \right) \quad \nabla_{\mu} J^{\mu} = 0$$

"Euler current"

Analogy with $O(3) \sigma$ model

$$J^{\mu} = \epsilon^{\mu\nu\lambda} \epsilon^{abc} n^a \partial_{\nu} n^b \partial_{\nu} n^c \qquad n^a n^a = 1$$

$$Q = \frac{1}{8\pi} \int d^2 x \, \epsilon^{ij} \epsilon^{abc} \, n^a \partial_i n^b \partial_j n^c \qquad \qquad \mathbf{S}^2 \to \mathbf{S}^2$$

$$n^a \to u^\mu \qquad \qquad u^\mu u_\mu = -1$$

$$\int d^3x \sqrt{-g} \,\frac{\kappa}{8\pi} A_\mu J^\mu$$

$$=\frac{\kappa}{8\pi}\int d^3x\,\sqrt{-g}\,A_{\mu}\varepsilon^{\mu\nu\lambda}\varepsilon^{\alpha\beta\gamma}u_{\alpha}\Big(\nabla_{\nu}u_{\beta}\nabla_{\lambda}u_{\gamma}-\frac{1}{2}R_{\nu\lambda\beta\gamma}\Big)$$

$$\int d^3x \sqrt{-g} \,\frac{\kappa}{8\pi} A_\mu J^\mu$$

$$=\frac{\kappa}{8\pi}\int d^3x\,\sqrt{-g}\,A_{\mu}\varepsilon^{\mu\nu\lambda}\varepsilon^{\alpha\beta\gamma}u_{\alpha}\Big(\nabla_{\nu}u_{\beta}\nabla_{\lambda}u_{\gamma}-\frac{1}{2}R_{\nu\lambda\beta\gamma}\Big)$$

• Makes sense only around $b \neq 0$

$$\int d^3x \sqrt{-g} \,\frac{\kappa}{8\pi} A_\mu J^\mu$$

$$=\frac{\kappa}{8\pi}\int d^3x\,\sqrt{-g}\,A_{\mu}\varepsilon^{\mu\nu\lambda}\varepsilon^{\alpha\beta\gamma}u_{\alpha}\Big(\nabla_{\nu}u_{\beta}\nabla_{\lambda}u_{\gamma}-\frac{1}{2}R_{\nu\lambda\beta\gamma}\Big)$$

- Makes sense only around $b \neq 0$
- Gauge invariant up to a boundary term: $\nabla_{\mu} J^{\mu}=0$

$$\int d^3x \sqrt{-g} \,\frac{\kappa}{8\pi} A_\mu J^\mu$$

$$=\frac{\kappa}{8\pi}\int d^3x\,\sqrt{-g}\,A_{\mu}\varepsilon^{\mu\nu\lambda}\varepsilon^{\alpha\beta\gamma}u_{\alpha}\Big(\nabla_{\nu}u_{\beta}\nabla_{\lambda}u_{\gamma}-\frac{1}{2}R_{\nu\lambda\beta\gamma}\Big)$$

- Makes sense only around $b \neq 0$
- Gauge invariant up to a boundary term: $\nabla_{\mu} J^{\mu}=0$
- K cannot be a function of b: $\nabla_{\mu}(\kappa(b) J^{\mu}) \neq 0$

$$\int d^3x \sqrt{-g} \,\frac{\kappa}{8\pi} A_\mu J^\mu$$

$$=\frac{\kappa}{8\pi}\int d^3x\,\sqrt{-g}\,A_{\mu}\varepsilon^{\mu\nu\lambda}\varepsilon^{\alpha\beta\gamma}u_{\alpha}\Big(\nabla_{\nu}u_{\beta}\nabla_{\lambda}u_{\gamma}-\frac{1}{2}R_{\nu\lambda\beta\gamma}\Big)$$

- Makes sense only around $b \neq 0$
- Gauge invariant up to a boundary term: $\nabla_{\mu} J^{\mu}=0$
- K cannot be a function of b: $\nabla_{\mu}(\kappa(b) J^{\mu}) \neq 0$
- K has topological interpretation

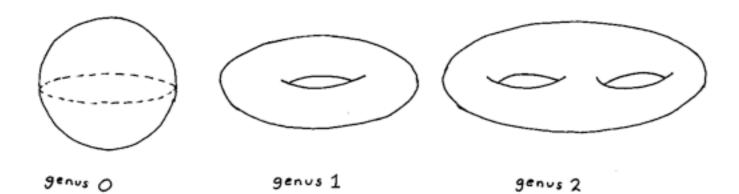
Relativistic "shift"

Relativistic "shift" $J^{0} = -\frac{1}{2} \epsilon^{0\nu\lambda} \epsilon^{\alpha\beta\gamma} u_{\alpha} R_{\nu\lambda\beta\gamma} + \dots = 2R_{1212} + \dots$

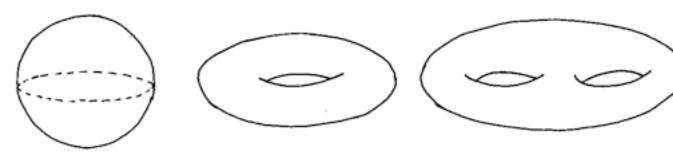
Relativistic "shift" $J^{0} = -\frac{1}{2} \epsilon^{0\nu\lambda} \epsilon^{\alpha\beta\gamma} u_{\alpha} R_{\nu\lambda\beta\gamma} + \dots = 2R_{1212} + \dots$ $Q = \int d^{2}x \frac{\delta S}{\delta A_{0}} = \int d^{2}x \left(\frac{\nu}{2\pi}B + \frac{\kappa}{8\pi}J^{0}\right)$

Relativistic "shift"
$$J^{0} = -\frac{1}{2} \epsilon^{0\nu\lambda} \epsilon^{\alpha\beta\gamma} u_{\alpha} R_{\nu\lambda\beta\gamma} + \dots = 2R_{1212} + \dots$$
$$Q = \int d^{2}x \frac{\delta S}{\delta A_{0}} = \int d^{2}x \left(\frac{\nu}{2\pi}B + \frac{\kappa}{8\pi}J^{0}\right)$$

$$J^{0} = -\frac{1}{2} \epsilon^{0\nu\lambda} \epsilon^{\alpha\beta\gamma} u_{\alpha} R_{\nu\lambda\beta\gamma} + \dots = 2R_{1212} + \dots$$
$$Q = \int d^{2}x \, \frac{\delta S}{\delta A_{0}} = \int d^{2}x \left(\frac{\nu}{2\pi}B + \frac{\kappa}{8\pi}J^{0}\right)$$



$$J^{0} = -\frac{1}{2} \epsilon^{0\nu\lambda} \epsilon^{\alpha\beta\gamma} u_{\alpha} R_{\nu\lambda\beta\gamma} + \dots = 2R_{1212} + \dots$$
$$Q = \int d^{2}x \, \frac{\delta S}{\delta A_{0}} = \int d^{2}x \left(\frac{\nu}{2\pi}B + \frac{\kappa}{8\pi}J^{0}\right)$$



genus O

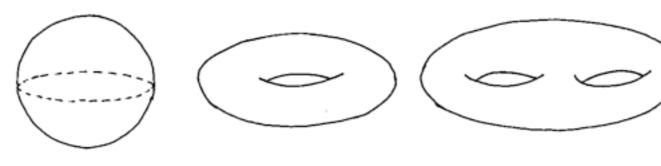
genus 1

genus 2

$$Q = rac{
u}{2\pi}N_{\phi} + rac{\kappa\chi}{2}$$
 "shift" (Wen-Zee)

Relativistic "shift"
$$J^{0} = -\frac{1}{2} \epsilon^{0\nu\lambda} \epsilon^{\alpha\beta\gamma} u_{\alpha} R_{\nu\lambda\beta\gamma} + \dots = 2R_{1212} + \dots$$

$$Q = \int d^2x \, \frac{\delta S}{\delta A_0} = \int d^2x \left(\frac{\nu}{2\pi}B + \frac{\kappa}{8\pi}J^0\right)$$



genus O

genus 1

genus 2

$$Q = rac{
u}{2\pi}N_{\phi} + rac{\kappa\chi}{2}$$
 "shift" (Wen-Zee)

for example: $\nu = 1/3$ $\kappa = 2/3$

Topology and dynamics

- Thus the coefficient of the new term is determined topologically
 - cannot change under small change of parameters
- But at the same time, the term itself is not topological (depends on the metric)
- contributes to correlation functions

Hall viscosity

• Consider metric perturbations

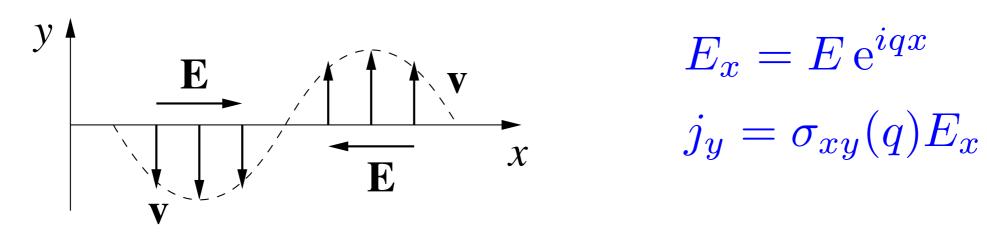
$$g_{ij} = \delta_{ij} + h_{ij}(t) \qquad \qquad h_{ii} = 0$$

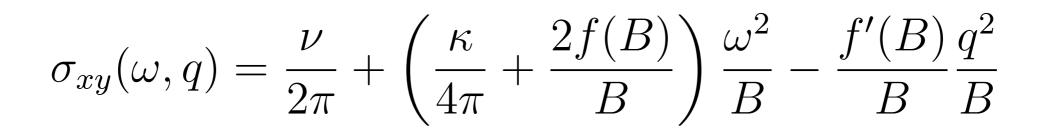
$$S = -\frac{\kappa B}{32\pi} \int d^3x \,\epsilon^{jk} h_{ij} \partial_t h_{ik}$$

$$\langle T_{11}T_{12}\rangle = i\eta_{\rm H}\omega$$

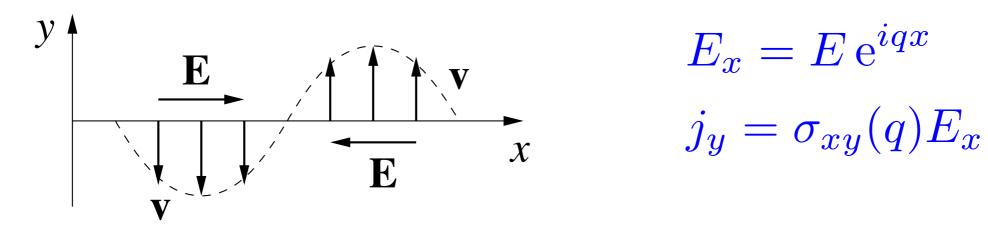
$$\eta_{\rm H} = \frac{\kappa B}{8\pi}$$

Response to inhomogeneous E





Response to inhomogeneous E



$$\sigma_{xy}(\omega,q) = \frac{\nu}{2\pi} + \left(\frac{\kappa}{4\pi} + \frac{2f(B)}{B}\right)\frac{\omega^2}{B} - \frac{f'(B)}{B}\frac{q^2}{B}$$

LLL limit: $f(b) = \frac{1}{8\pi}(\nu - \kappa)b$ $\sigma_{xy}(\omega,q) = \frac{\nu}{2\pi} + \frac{\nu}{\pi}\frac{\omega^2}{B} + \frac{\kappa - \nu}{8\pi}\frac{q^2}{B}$

Zeroth Landau level symmetry

• For a FQH state on the zeroth Landau level

$$(\partial_{\bar{z}} - iA_{\bar{z}})\psi = 0 \qquad \frac{(D_x + iD_y)\psi = 0}{(D_x - iD_y)\psi^{\dagger} = 0}$$

Stress tensor in static magnetic field: $T^{\mu\nu} = -\frac{i}{4}\bar{\psi}\gamma^{\mu}\overleftrightarrow{D}^{\nu}\psi$

$$T^{0i} = -\frac{i}{4}(\psi^{\dagger}D_{i}\psi - D_{i}\psi^{\dagger}\psi) = -\frac{1}{4}\epsilon^{ij}\partial_{j}(\psi^{\dagger}\psi)$$

From effective action 7

$$\Gamma^{0i} = \frac{\delta S}{\delta g_{0i}} = -\epsilon^{ij} \partial_j \left(\frac{\kappa}{8\pi} b + f(b)\right)$$

$$f(b) = \frac{1}{8\pi}(\nu - \kappa)b$$

More generally

 How much of what we learned in relativistic systems can be extended to nonrelativistic systems (GaAs)?

Nonrelativistic case

$$S = \int d^3x \sqrt{g} \left[\frac{i}{2} \psi^{\dagger} \overset{\leftrightarrow}{D}_t \psi - \frac{g^{ij}}{2m} D_i \psi^{\dagger} D_j \psi + \gamma \frac{B}{4m} \psi^{\dagger} \psi \right]$$

+ interactions

 $D_{\mu}\psi \equiv (\partial_{\mu} - iA_{\mu})\psi$

Nonrelativistic case

$$S = \int d^3x \sqrt{g} \left[\frac{i}{2} \psi^{\dagger} \overset{\leftrightarrow}{D}_t \psi - \frac{g^{ij}}{2m} D_i \psi^{\dagger} D_j \psi + \gamma \frac{B}{4m} \psi^{\dagger} \psi \right]$$

+ interactions $D_{\mu}\psi \equiv (\partial_{\mu} - iA_{\mu})\psi$

 γ =2: LLL degenerate with zero energy in any magnetic field and metric

$$H = \int d^2x \, \frac{1}{m} D_z \psi^{\dagger} D_{\overline{z}} \psi + O(m^0) \qquad z = x + iy$$

Nonrelativistic case

$$S = \int d^3x \sqrt{g} \left[\frac{i}{2} \psi^{\dagger} \overset{\leftrightarrow}{D}_t \psi - \frac{g^{ij}}{2m} D_i \psi^{\dagger} D_j \psi + \gamma \frac{B}{4m} \psi^{\dagger} \psi \right]$$

+ interactions $D_{\mu}\psi \equiv (\partial_{\mu} - iA_{\mu})\psi$

 γ =2: LLL degenerate with zero energy in any magnetic field and metric

$$H = \int d^2x \, \frac{1}{m} D_z \psi^{\dagger} D_{\bar{z}} \psi + O(m^0) \qquad z = x + iy$$

LLL limit $m \to 0$ constraint $D_{\bar{z}}\psi = 0$ correlation functions are finite

DTS, M.Wingate 2006

Gauge invariance: $\psi \to e^{i\alpha}\psi \qquad A_{\mu} \to A_{\mu} + \partial_{\mu}\alpha$

General coordinate invariance:

$$\begin{split} \delta\psi &= -\xi^k \partial_k \psi \\ \delta A_0 &= -\xi^k \partial_k A_0 - A_k \dot{\xi}^k + \frac{1}{2} \varepsilon^{ij} \partial_i (g_{jk} \dot{\xi}^k) \\ \delta A_i &= -\xi^k \partial_k A_i - A_k \partial_i \xi^k - m g_{ik} \dot{\xi}^k \\ \delta g_{ij} &= -\xi^k \partial_k g_{ij} - g_{kj} \partial_i \xi^k - g_{ik} \partial_j \xi^k \end{split}$$

Galilean transformations: special case $\xi^i = v^i t$

DTS, M.Wingate 2006

Gauge invariance: $\psi \to e^{i\alpha}\psi \qquad A_{\mu} \to A_{\mu} + \partial_{\mu}\alpha$

General coordinate invariance:

$$\begin{split} \delta\psi &= -\xi^k \partial_k \psi \\ \delta A_0 &= -\xi^k \partial_k A_0 - A_k \dot{\xi}^k + \frac{1}{2} \varepsilon^{ij} \partial_i (g_{jk} \dot{\xi}^k) \\ \delta A_i &= -\xi^k \partial_k A_i - A_k \partial_i \xi^k - m g_{ik} \dot{\xi}^k \qquad m \to 0 \\ \delta g_{ij} &= -\xi^k \partial_k g_{ij} - g_{kj} \partial_i \xi^k - g_{ik} \partial_j \xi^k \end{split}$$

Galilean transformations: special case $\xi^i = v^i t$

DTS, M.Wingate 2006

Gauge invariance: $\psi \to e^{i\alpha}\psi \qquad A_{\mu} \to A_{\mu} + \partial_{\mu}\alpha$

General coordinate invariance:

$$\begin{split} \delta\psi &= -\xi^k \partial_k \psi \\ \delta A_0 &= -\xi^k \partial_k A_0 - A_k \dot{\xi}^k + \frac{1}{2} \varepsilon^{ij} \partial_i (g_{jk} \dot{\xi}^k) \\ \delta A_i &= -\xi^k \partial_k A_i - A_k \partial_i \xi^k \qquad m \to 0 \\ \delta g_{ij} &= -\xi^k \partial_k g_{ij} - g_{kj} \partial_i \xi^k - g_{ik} \partial_j \xi^k \end{split}$$

Galilean transformations: special case $\xi^i = v^i t$

DTS, M.Wingate 2006

Gauge invariance: $\psi \to e^{i\alpha}\psi \qquad A_{\mu} \to A_{\mu} + \partial_{\mu}\alpha$

General coordinate invariance:

$$\begin{split} \delta\psi &= -\xi^k \partial_k \psi \\ \delta A_0 &= -\xi^k \partial_k A_0 - A_k \dot{\xi}^k + \frac{1}{2} \varepsilon^{ij} \partial_i (g_{jk} \dot{\xi}^k) \\ \delta A_i &= -\xi^k \partial_k A_i - A_k \partial_i \xi^k \qquad m \to 0 \\ \delta g_{ij} &= -\xi^k \partial_k g_{ij} - g_{kj} \partial_i \xi^k - g_{ik} \partial_j \xi^k \end{split}$$

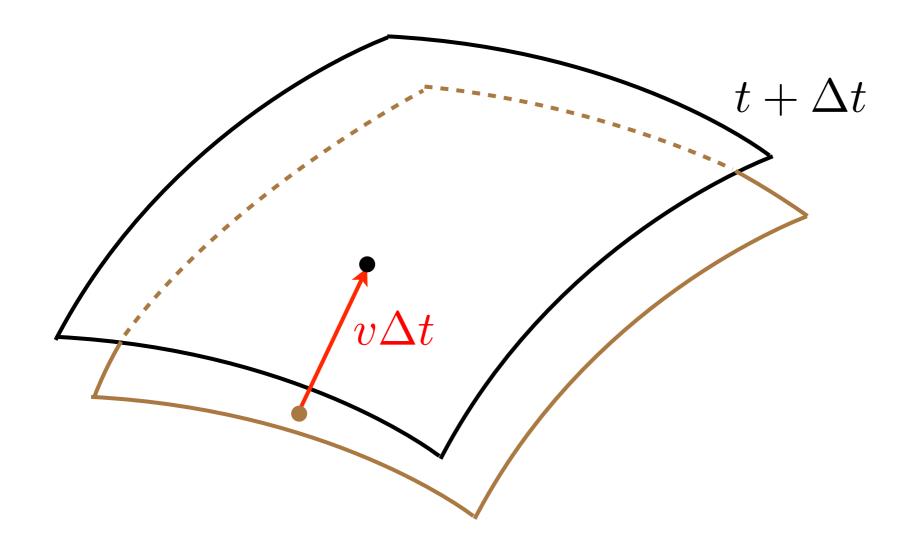
Galilean transformations: special case $\xi^i = v^i t$

Effective theory must respect these unusual symmetries

More on geometry

- System does not live in a 3D Riemann space
- 2D Riemann manifold at any time slice
 - can parallel transport along equal-time slices, but one need new information to transport between different times

Velocity vector v



A vector v needed to parallel transport objects from one time slice to another

Newton-Cartan structure: (g_{ij}, v^i)

$$(g^{\mu\nu}, n_{\mu}, v^{\mu})$$
 $g^{\mu\nu}n_{\nu} = 0$ $n_{\mu}v^{\mu} = 1$

$$(g^{\mu\nu}, n_{\mu}, v^{\mu})$$
 $g^{\mu\nu}n_{\nu} = 0$ $n_{\mu}v^{\mu} = 1$

 $dn = 0 \Rightarrow n = dt$ choose t to be time coordinate

$$(g^{\mu\nu}, n_{\mu}, v^{\mu})$$
 $g^{\mu\nu}n_{\nu} = 0$ $n_{\mu}v^{\mu} = 1$

 $dn = 0 \Rightarrow n = dt$ choose t to be time coordinate

$$g^{\mu\nu}g_{\nu\lambda} = \delta^{\mu}_{\lambda} - v^{\mu}n_{\lambda} \qquad \qquad g_{\mu\nu}v^{\nu} = 0$$

$$(g^{\mu\nu}, n_{\mu}, v^{\mu})$$
 $g^{\mu\nu}n_{\nu} = 0$ $n_{\mu}v^{\mu} = 1$

 $dn = 0 \Rightarrow n = dt$ choose t to be time coordinate

$$g^{\mu\nu}g_{\nu\lambda} = \delta^{\mu}_{\lambda} - v^{\mu}n_{\lambda} \qquad \qquad g_{\mu\nu}v^{\nu} = 0$$

 $g^{\mu\nu} = \begin{pmatrix} 0 & 0\\ 0 & g^{ij} \end{pmatrix} \qquad g_{\mu\nu} = \begin{pmatrix} v^2 & -v_j\\ -v_i & g^{ij} \end{pmatrix}$

Newton-Cartan connection

$$\Gamma^{\lambda}_{\mu\nu} = v^{\lambda}\partial_{\mu}n_{\nu} + \frac{1}{2}g^{\lambda\rho}(\partial_{\mu}g_{\rho\nu} + \partial_{\nu}g_{\rho\mu} - \partial_{\rho}g_{\mu\nu})$$

Properties:

$$\nabla_{\lambda}g^{\mu\nu} = 0 \qquad \nabla_{\mu}n_{\nu} = 0 \qquad g_{\alpha[\mu}\nabla_{\nu]}v^{\alpha} = 0$$

Improved gauge potentials

• With v one can construct a gauge potential that transforms as a one-form

$$\tilde{A}_i = A_i$$
$$\tilde{A}_0 = A_0 - \frac{1}{2} \varepsilon^{ij} \partial_i (g_{jk} v^k)$$

$$\delta \tilde{A}_{\mu} = -\xi^k \partial_k \tilde{A}_{\mu} - \tilde{A}_k \partial_{\mu} \xi^k$$

What is v?

- Microscopic Lagrangian does not involve v
- there is a freedom to choose v
- One possible choice is

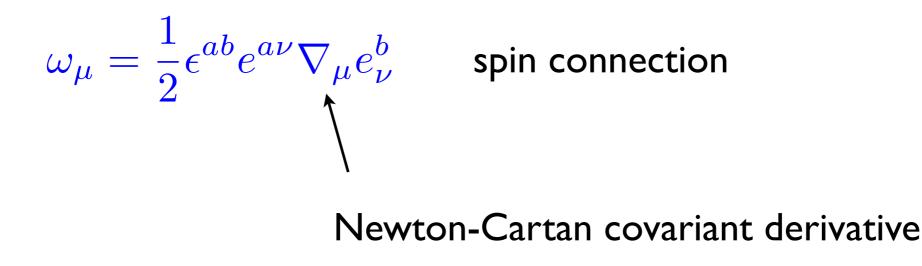
$$\tilde{F}_{\mu\nu}v^{\nu}=0$$

$$v^i = \frac{\epsilon^{ij} E_j}{B} + \cdots$$

drift velocity

Effective field theory

$$S = \int d^3x \,\epsilon^{\mu\nu\lambda} \left(\frac{\nu}{4\pi} \tilde{A}_{\mu} \partial_{\nu} \tilde{A}_{\lambda} + \frac{\kappa}{2\pi} \tilde{A}_{\mu} \partial_{\nu} \omega_{\lambda} - \frac{c}{48\pi} \omega_{\mu} \partial_{\nu} \omega_{\lambda} \right) + \cdots$$



$$\kappa = \nu S$$
 $S = \text{shift}$

c = number of boundary modes? Abanov, Gromov 2014

Conclusions

- There is a nontrivial interplay between topology and geometry in quantum Hall effects
- Symmetries when put in curved space, implying nontrivial results in flat space
 - response to inhomogeneous EM field
- Constraints on possible holographic realizations of the FQHE

Thank you