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Review of quantum Hall physics

Relativistic QHE
® new Chern-Simons term
Symmetries

Newton-Cartan geometry




Classical Hall effect

2D electron density




Quantum Hall effect
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Integer quantum Hall state

® clectrons filling n Landau levels

Electrons above filled Landau levels: localized by defects




Fractional QH effect
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Fractional quantum Hall state

n=3

n=|

Without interactions, ground state has huge degeneracy

Interactions somehow lift the degeneracy, make system gapped
at particular values of the filling factor
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Energy scales

IQH

Interesting limit: eB/mc >> A (m—0 limit)
only lowest Landau level (LLL) states survives

No small parameter




QHE in graphene
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Du et al, Nature 492, 192 (2009) Bolotin et al, Nature 492, 192 (2009)




QHE in graphene

Vg V) n (10" cm?)

Du et al, Nature 492, 192 (2009) Bolotin et al, Nature 492, 192 (2009)

We will use graphene as a training ground

(review of graphene: Semenoff’s talk)




Relativistic QH effect

Consider relativistic fermions in a magnetic field

What is the low-energy effective theory of the quantum
Hall states!?

gap: no low-energy degree of freedom

local effective action

S = Seff [A,uyg,zu/]




Relativistic invariance

® The effective theory must be relativistically invariant

Z[Au] — /Dw DQE eXp(iS[Amw,%@])

Ay — A, Sett[Ap] = Sert[A}]

In the same way the effective action must be general-
coordinate invariant




Power counting

The effective action can be expanded in powers of
fields and of derivatives

To organize the expansions, we give count fields as
different powers of momentum

One possible scheme is




Order O(p)

® One term at order O(p™)

S = d>x e“W‘A 0, A
Agr

Encodes information about Hall conductivity




Order O(pY)

e Atorder O(p° Fj,

We can instead use b and u"

1 1 1/2
but = Ze" M F\ b= (§FWFW)

v _
utu, = 1

S:---—/d% —ge(b)

€(b): energy density as function of magnetic field




Order O(p)

® From b and u! it seems that the only term to
order O(p) that one can form is

S =t [ @ fO 00,0,

f(b) determines by the dynamics
But there is another term to O(p) order




Topological current

® Flat space: identically conserved current  u"u, = —1

JH = gtvAzaBy g, Oy ug OxU~ 0,J" =0

In curved space

JH = gl APy, (v,,u@v,\u7 —

“Euler current”




Analogy with O(3) 0 model

JH = et retbenan nbo ne
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Second topological term

/dgxr A, JH

1

_ %/dgx —g AMEMVAgaBVUQ (VVUBVAU’Y — QRW‘&Y)




Second topological term

/dgxr A, JH

1
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® Makes sense only around b+0




Second topological term

/dgxr A, JH
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® Makes sense only around b+0

® Gauge invariant up to a boundary term: V|, JH=0




Second topological term

/dgxr A, JH

1
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® Makes sense only around b+0
® Gauge invariant up to a boundary term: V|, JH=0

® K cannot be a function of b: V(k(b) JH) #0




Second topological term

/dgxr A, JH

1

_ S%/disx —g Auguukgaﬁvu(x (V,/UBVAUW — §R1/)\ﬁ’y>

Makes sense only around b+0
Gauge invariant up to a boundary term: Vy, J¥=0

K cannot be a function of b: V(k(b) JH) #0

K has topological interpretation



Relativistic “‘shift’




Relativistic “‘shift’

1
70 — _ieOukeaﬁvuaRV)\B,y 4+ - =2Rq919 + - -




Relativistic “‘shift’

1
70 — __60V>\ aﬁvuaRV)\ﬁfy + - =2Rq910 + - -

d2 I 2 LBI KR 20
@ = / x(SAO /d x(27r 87TJ>




Relativistic “‘shift’

1
JV = ——60”/\ “PYugRyrgy + -+ = 2R1912 + - -

@ = /d2 5AO_/ x(%B ’ 8IjTJO>

® Consider the QH state on a curved manifold




Relativistic “‘shift’
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® Consider the QH state on a curved manifold




Relativistic “‘shift’
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Relativistic “‘shift’

1
JV = __€0u>\ “PYugRyrgy + -+ = 2R1912 + - -

2 _ 2 (V' »n | F 10
@ = /d 5 Ao /d x(QwB | 87TJ>

® Consider the QH state on a curved manifold

“shift” (VWen-ZLee)

for example: v =1/3 k=2/3



Topology and dynamics

® Thus the coefficient of the new term is determined
topologically

® cannot change under small change of parameters

® But at the same time, the term itself is not
topological (depends on the metric)

® contributes to correlation functions




Rall viscosity

® Consider metric perturbations
9ij = 05 + hij (1) hii =0

kB

S = 39 /dSQE Ejkhijathik

(T11T12) = 1qgw

kB

G




Response to inhomogeneous E

E,. = Ee'9”
Jy = ny(q)EfL’




Response to inhomogeneous E

E,. = Ee'9”
Jy = ny(q)EfL’




Zeroth Landau level symmetry

® For a FQH state on the zeroth Landau level

. (Dy +1Dy)Yp =0
(0: —idz)p =0, iD,)yt =0

Stress tensor in static magnetic field: 7"

1% = — L (1 Dap — D) = — 0, (w1

0S5 K

From effective action 7" = = —¢¥ 8j(
(Sg()?; ST




More generally

® How much of what we learned in relativistic

systems can be extended to nonrelativistic systems
(GaAs)!?




Nonrelativistic case

_ 3 _z TH gij o T . | B T
§ = [d' g | v Dt = SoDwl Dy st

+ interactions Dy = (0, —iA,)Y




Nonrelativistic case

_ 3 _z TH gij o T . | B T
§ = [d' g | v Dt = SoDwl Dy st

+ interactions Dy = (0, —iA,)Y

Y=2:LLL degenerate with zero energy in any magnetic field
and metric

1
H = /de — D, "Dz + O(mP°) z=1x+ 1y
m




Nonrelativistic case

_ 3 _z TH gij o T . | B T
§ = [d' g | v Dt = SoDwl Dy st

+ interactions Dy = (0, —iA,)Y

Y=2:LLL degenerate with zero energy in any magnetic field
and metric

1
H = /de — D, "Dz + O(mP°) z=1x+ 1y
m

LLL limit m — 0 constraint DzY =0
correlation functions are finite




NR general coordinate inv.
DTS, M.Wingate 2006

Gauge invariance: ¢ — €'Y A, — A, + 8,0

General coordinate invariance:

51 = —€" Oy
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Galilean transformations: special case &=vit
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NR general coordinate inv.
DTS, M.Wingate 2006

Gauge invariance: ¢ — €'Y A, — A, + 8,0

General coordinate invariance:

51 = —€" Oy

. 1 .. .
6 Ao = —€* 0k Ag—Arg" + S0 (ging")

6A; = —EF0LA; — ARO;E"
0gi; = =50k gii — gr; 06" — gin0;€"

Galilean transformations: special case &=vit

Effective theory must respect these unusual symmetries




More on geometry

® System does not live in a 3D Riemann space
® 2D Riemann manifold at any time slice

® can parallel transport along equal-time slices, but
one need new information to transport
between different times




Velocity vector v

A vector v needed to parallel transport objects from one
time slice to another

Newton-Cartan structure: (g, Ui)




Newton-Cartan geometry




Newton-Cartan geometry

(g'uya Uy U'u) g"“n, =0 TLMU“ =3




Newton-Cartan geometry

(g'uya Uy U'u) g"“n, =0 TLMU“ =3

dn =0 = n = dt choose t to be time coordinate




Newton-Cartan geometry

(g'uya Uy U'u) g"“n, =0

dn =0 = n = dt choose t to be time coordinate

9" gux = 0§ — v''ny g’ =0




Newton-Cartan geometry

(g'uya Uy U'u) g"“n, =0 TLMU“ =3

dn =0 = n = dt choose t to be time coordinate




Newton-Cartan connection

I’;)V — v/\ﬁﬂny +

Properties:

VAQW/ — () VHTL,/ = 0 ga[,uvz/]va =0




Improved gauge potentials

® With v one can construct a gauge potential that
transforms as a one-form

~

A, = A,
A 1 19 k
A() a A() — 58 &;(gjkv )

~

0A, = —¢FoL A, — Ap0,E"




What is v!

® Microscopic Lagrangian does not involve v
® thereis a freedom to choose v

® One possible choice is

drift velocity




Effective field theory

d3 PV (L
S / T € =

1
ab av b . .
w, = € eV, e, spin connection

T
Newton-Cartan covariant derivative

kK = 1S S = shift

¢ — number of boundary modes? Abanov, Gromov 2014




Conclusions

® There is a nontrivial interplay between topology
and geometry in quantum Hall effects

® Symmetries when put in curved space, implying
nontrivial results in flat space

® response to inhomogeneous EM field

® Constraints on possible holographic realizations of
the FQHE




Thank you



