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Non-zero chemical potential

Euclidean SU(3) gauge theory with fermions:

Z=∫DAμ
aD Ψ̄DΨ exp(−SE [Aμ

a
]−Ψ̄DE(Aμ

a
)Ψ)

For  nonzero chemical potential, the fermion determinant is complex

Sign problem             Naïve Monte-Carlo breaks down

QCD sign problem

Z=∫DUexp(−SE [U ])det (M(U))

Integrate out fermionic variables, perform lattice discretisation 

Aμ
a ( x , τ)  →  U μ( x , τ)∈SU (3)  link variables

DE (A)  →  M (U )  fermion matrix

Importance sampling is possibledet (M (U ))>0  →

det (M (U ,−μ ∗ ))=(det (M (U ) ,μ)) ∗



Only the zero density axis is directly accessible 
  to lattice calculations using importance sampling

det (M (U ,μ))∈ℂ  for μ>0

Z=∫DUexp(−SE [U ])det (M(U))

Path integral with complex weight

QCD sign problem



〈F 〉μ=
∫DU e−S E det M (μ)F

∫DU e−S E det M (μ)
=
∫DU e−S E R

det M (μ)

R
F

∫DU e−S E R
det M (μ)

R

=
〈F det M (μ)/R 〉R

〈det M (μ)/R 〉R

Reweighting

〈 det M (μ)

R 〉
R

=
Z (μ)

Z R

=exp (−VT Δ f (μ , T ))
Δ f (μ , T )  =free energy difference

Exponentially small as the volume increases

Reweighting works for large temperatures and small volumes  

〈F 〉μ  →  0 /0

μ/T≈1Sign problem gets hard at

R=det M (μ=0), ∣det M (μ)∣, etc. 



(Multi parameter) reweighting

Analytic continuation of results obtained at imaginary  

Taylor expansion in 

Canonical Ensemble, denstity of states, curvature of critical surface,
subsets, fugacity expansion, SU(2) QCD, G2 QCD, dual variables, worldlines, ….

Barbour et. al. '97; Fodor, Katz '02

Most methods going around the problem work only for  =B/3T

(μ /T )
2

de Forcrand et al. (QCD-TARO) '99; Hart, Laine, Philipsen  '00; 
Allton et al. '05; Gavai and Gupta '08; de Forcrand, Philipsen '08,... 
 

Lombardo '00; de Forcrand, Philipsen  '02; D'Elia Sanfilippo '09; Cea et. al. '08-,... 

μ

Evading the QCD sign problem



Aarts '13
Aarts, Bongiovanni, Seiler, Sexty '14 

thimble and stochastic quantisation 

Euclidean theory                  Parisi and Wu '81
Complex Langevin               Klauder '83, Parisi '83, Hüffel, Rumpf '83, …. 

Recent revival:                     Aarts and Stamatescu '08 
Bose Gas, Spin model, etc.  Aarts '08, Aarts, James '10 Aarts, James '11 
Proof of convergence:          Aarts, Seiler, Stamatescu '11
Gauge cooling,                    
QCD with heavy quarks:       Seiler, Sexty, Stamatescu '12
Full QCD with light quarks:   Sexty '14

Stochastic quantisation

Direct Methods: 
Use analiticity, expand integrals to the complex plane

Lefschetz thimble

Theory:                                  Witten '10 Cristoforetti et al. (Aurora) '12
Toy models, Bose gas, etc.:  Cristoforetti, Di Renzo, Mukherjee, Scorzato '13
                                             Mukherjee, Cristoforetti, Scorzato '13, 
                                             Cristoforetti et. al. '14
                                             Fujii, Honda, Kato, Kikukawa, Komatsu, Sano '13
                                   

See talk of Gert Aarts



Stochastic process for  x:

d x
d

=−
∂S
∂ x

 

Gaussian noise

Averages are calculated along the trajectories:

⟨O ⟩=limT→∞

1
T
∫
0

T

O(x (τ))d τ=
∫e−S (x)O(x)dx

∫e−S (x)dx

for real action the
 Langevin method is convergent

Stochastic Quantization Parisi, Wu (1981)

⟨η(τ)⟩=0

Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')

Fokker-Planck equation for the probability distribution of P(x):

∂P
∂

= ∂
∂ x


∂P
∂ x

P
∂ S
∂ x

=−HFPP Real action         positive eigenvalues



Langevin method with complex action

The field is complexified

real scalar            complex scalar

link variables: SU(N)              SL(N,C)
compact          non-compact

Klauder '83, Parisi '83, Hueffel, Rumpf '83,
Okano, Schuelke, Zeng '91, ...
applied to nonequilibrium: Berges, Stamatescu '05, ...

d x
d

=−
∂S
∂ x

 

Analytically continued observables

1
Z∫ P comp( x )O ( x )dx=

1
Z∫ P real ( x , y )O ( x+iy )dx dy

det (U )=1, U + ≠ U−1

〈 x2〉real  →  〈 x2− y2〉complexified

“troubled past”:  Lack of theoretical understanding
                           Convergence to wrong results
                           Runaway trajectories

( =
1
T
∫O( z ( τ))d τ )



Proof of convergence

S=SW [U μ]+ln Det M (μ) measure has zeros
complex logarithm has a branch cut
                    meromorphic drift 
Is it a problem for QCD?

Non-holomorphic action for nonzero density

       
If there is fast decay 

and a holomorphic action

[Aarts, Seiler, Stamatescu (2009)
 Aarts, James, Seiler, Stamatescu (2011)]

[see also: Mollgaard, Splittorff (2013)]

then CLE converges to the correct result

P (x , y )→0  as y→∞

S (x)

(Det M=0)



S [x ]=σ x2+i λ x

Gaussian Example

σ=1+i λ=20

d
d τ

(x+i y )=−2σ(x+iy)−iλ+η

CLE

P (x , y )=e−a(x−x0)
2
−b( y− y0 )

2
−c (x−x0)( y− y0)

real and positive
Gaussian distribution 

Measure 
on real axis

1
Z∫ Pcomp (x )O (x )dx=

1
Z
∫ P real( x , y )O (x+iy)dx dy



Non-real action problems and CLE (besides nonzero density)

1. Real-time physics

2. Theta-Term

[Berges, Stamatescu (2005)]
[Berges, Borsanyi, Sexty, Stamatescu (2007)]
[Berges, Sexty (2008)]“Hardest” sign problem eiS M

Studies on Oscillator, pure gauge theory 

[Bongiovanni, Aarts, Seiler, Sexty, Stamatescu (2013)+in prep.]

Q=ϵ
μ νθρF μν F θρ→∑x

q(x)
On the lattice

S=F μν F
μν

+iΘϵ
μ νθρF μν F θρ

Not topological
Cooling is needed
     bare parameter needs
        renormalisation
ΘL

Θ  real → complex action, ⟨Q⟩  imaginary
Θ  imaginary → real action, ⟨Q⟩  real

Θ  imaginary →  use real Langevin or HMC 
Θ  real →  use complex Langevin 



comparing real 
     with imaginary  

Θ
Θ

Using analyticity

⟨Q⟩ΘI
=−

∂ ln Z
∂ΘI

=Ωχ LΘI (1−2b2ΘI
2+3 b4ΘI

4+...)

−i ⟨Q⟩ΘR
=

∂ lnZ
∂ΘR

=ΩχLΘR(1+2b2ΘR
2 +3b4ΘR

4 +...)

Expected dependence

χL  drops at higher temperature 

No renormalisation yet



Gaugefixing in SU(2) one plaquette model

SU(2) one plaquette model: S=i Tr U U∈SU 2 

“gauge” symmetry: UWUW−1 complexified theory: U ,W ∈SL 2,ℂ

Using gauge symmetry
After each Langevin timestep: fix gauge condition

U=a1i 1−a23 bi=0,0,1−a2

〈f (U)〉=
1
Z∫

0

2π

d φ∫dΩsin2 φ

2
e
iβcos

φ

2 f (U(φ , n̂))
exact averages by 
  numerical integration:

Berges, Sexty '08



SU(2) one-plaquette model 
Distributions of Tr(U) on the complex plane

Without gaugefixing With gaugefixing

〈Tr U〉=i0.2611

−0.02±0.02i −0.01±0.02 −0.004±0.006i 0.260±0.001

Exact result from integration:

From simulation:

With gauge fixing, all averages are correctly reproduced



Gauge theories and CLE

Unitarity norm: ∑i
Tr (U iU i

+ )⩾N
Distance from SU(N)

Tr (U U + )+Tr (U−1(U−1) + )≥2N

∑ij
∣(U U + −1)ij∣

2

link variables: SU(N)              SL(N,C)
compact          non-compact

det (U )=1, U + ≠ U−1

Gauge degrees of freedom also complexify

Infinite volume of irrelevant, unphysical configurations 

Process leaves the SU(N) manifold exponentially fast 
 already at μ≪1



Gauge cooling

complexified distribution with slow decay            convergence to wrong results

Minimize unitarity norm
∑i

Tr (U iU i
+ −1)

Using gauge transformations in SL(N,C)

U μ( x )→V (x )U μ( x )V
−1( x+aμ) V ( x )=exp(i λa va( x))

va( x)is imaginary  (for real           , unitarity norm is not changed) 

Ga( x )=2Tr [λa(U μ( x )U μ
+ ( x )−U μ

+ ( x−aμ)Uμ ( x−aμ))]

Gradient of the unitarity norm gives steepest descent

va( x)

Distance from SU(N)

Keep the system from trying to explore the 
    complexified gauge degrees of freedom

[Seiler, Sexty, Stamatescu (2012)]



U μ( x−aμ)→U μ( x−aμ)exp(αϵλaGa( x ))

Gauge transformation at      changes 2d link variables 

U μ( x )→exp(−αϵλaGa( x ))U μ( x )

Dynamical steps are interspersed with several gauge cooling steps

The strength of the cooling is determined by 
      cooling steps
      gauge cooling parameter 

x

α

Empirical observation:
   Cooling is effective for 

β>βmin but remember,β→∞
in cont. limit (a→0)a<amax



Smaller cooling

           
           excursions into complexified
              manifold 

“Skirt” develops

small skirt gives correct result



Heavy Quark QCD at nonzero chemical potential (HDQCD)

Det M (μ)=∏x
det (1+C P x)

2 det (1+C ' P x
−1)2

P x=∏
τ
U 0( x+τa0) C=[2 κexp(μ)]N τ C '=[2 κexp(−μ)]N τ

Hopping parameter expansion of the fermion determinant
Spatial hoppings are dropped

S=SW [U μ]+ln Det M (μ)

Studied with reweighting De Pietri, Feo, Seiler, Stamatescu '07

CLE study using gaugecooling

[Seiler, Sexty, Stamatescu (2012)]

R=e
∑

x
C Tr Px+C ' Tr P−1



Gauge cooling stabilizes the distribution
 SU(3) manifold instable even at  μ=0



average phase:

⟨exp(2 iϕ)⟩= ⟨ Det M (μ)

Det M (−μ) ⟩

Reweigthing is impossible at 6≤μ/T≤12 , CLE works all the way to saturation

Fermion density:

n=
1
N τ

∂ ln Z
∂μ

det (1+C P )=1+C3+C Tr P+C 2 Tr P−1 Sign problem is absent at  
  small or large μ

Saturation   –  “inverse” Silver Blaze behaviour   



Nonzero  value  when:
colorless bound states 
formed with P or P'  

1 quark:
 meson with P'

2 quark:
 Baryon with P

P' has a peak before P

Large chemical potential: all quark states are filled
   No colorless state can be formed 

P and P' decays again

Polyakov loop at high densities



Comparison to reweighting 

64  lattice , μ=0.85

Discrepancy of plaquettes at              
   a skirted distribution  develops  

β≤5.6

64  lattice , β=5.9

a(β=5.6)=0.2 fm



Large lattice: 
phase transition clearly visible

for β>βmin



Mapping the phase diagram

fixed β=5.8  →  a≈0.15 fm

κ=0.12   
onset transition at μ=−ln (2κ)=1.43

N t∗83  lattice 
N t=2..28 Temperature scanning

[Aarts, Jäger, Seiler, Sexty, Stamatescu, in prep.]



Phase diagram in HDQCD

Onset in fermionic density
    Silver blaze phenomenon

Polyakov loop
  Transition to deconfined state

β=5.8   κ=0.12  N f=2  N t=2. ..24

[Aarts, Jäger, Seiler, Sexty, Stamatescu, in prep.]



Polyakov loop susceptibility

Hint of first order deconfinement and first order onset transition



HDQCD κs=0     →    κs  expansion    →     full QCD

Systematic expansion in κs

Onset of the fermionic density
 At low temperatures

Convergence can be checked explicitly 

Cheaper alternative to full QCD
   At heavier quark masses

[Sexty, Stamatescu, et al. in prep.]

Expansionκs



QCD with fermions Z=∫DU e−S G det M

K ax ν
F =

N F

4
Dax ν ln det M=

N F

4
Tr (M−1M ' νa( x , y , z ))

Extension to full QCD with light quarks
[Sexty (2014)]

Additional drift term from determinant

Noisy estimator with one noise vector
 Main cost of the simulation: CG inversion

Unimproved staggered and Wilson fermions

Heavy quarks:  compare to HDQCD
Light quarks: compare to reweighting

Inversion cost highly dependent on chemical potential
Eigenvalues not bounded from below by the mass
     (similarly to isospin chemical potential theory)



In saturation           symmetric pure gauge theory is recovered Z3

High temperature T>T c



Comparison of HDQCD in LO and full QCD

Similar behaviour at 
   intermediate masses

Quantative agreement at 
   high masses



Comparison with reweighting
   for full QCD 

[Fodor, Katz, Sexty (in prep.)]

R=Det M (μ=0)

Reweighting from ensemble at 



Sign problem

Sign problem gets hard around μ/T≈1−1.5

〈exp(2 iϕ)〉= 〈det M (μ)

det M (−μ) 〉



Spectrum of the Dirac Operator N F=4  staggered

Massless staggered operator at          is antihermitianμ=0



Spectrum of the Dirac Operator N F=4  staggered



Spectrum of the Dirac Operator

Large chemical potential, towards saturation

Fermions become “heavy”



Conclusions

Recent progress for CLE simulations 
   Better theoretical understanding  (poles?)
   Gauge cooling
 

First results for full QCD with light quarks
   No sign or overlap problem 
   CLE works all the way into saturation region
   Comparison with reweighting for small chem. pot.
   Low temperatures are more demanding
   First results for the phase diagram of HDQCD

  

Direct simulations at nonzero density using complexified fields
     Complex Langevin Equations 


