Thermalization process in weakly coupled field theories far from equilibrium

Soeren Schlichting

Strong & ElectroWeak Matter 2014, Lausanne, 07/15/2014

How is thermal equilibrium reached?

Examples of far-from equilibrium systems

Early universe – Scenarios for reheating after inflations

Heavy-Ion collision in the weak coupling picture

Non-equilibrium phenomena may be shared by different systems

Inflation

Quantum Fluctuations

4

Thermalization process in the early universe

Cosmology – Reheating after Inflation

Many models for thermalization of the early universe have been studied

Will consider here a simple massless scalar field theory ($\lambda \Phi^4$), which using a conformal transformation can be mapped onto a non-expanding non-expanding scalar field theory:

$$S[\phi] = \int d^4x \left(\frac{1}{2}\partial_\mu \phi \partial^\mu \phi - \frac{\lambda}{24}\phi^4\right)$$

(c.f. Micha, Tkachev PRD 70 (2004) 043538)

Coupling constant is typically very small

 $\lambda \sim 10^{-8}$

The initial field amplitude of the inflation field is large

 $/\lambda$

$$\phi \sim 1/\gamma$$

Weakly coupled but strongly interacting

Non-equilibrium dynamics at weak coupling

Classical-statistical field theory

Whenever the occupancy/field amplitudes are large (f >> 1) a description in terms of classical field equations of motion is applicable

 $\Box \phi - \lambda \phi^3 = 0$

→ Can be solved numerically for a discretized space-time using lattice techniques (first principles description)

Kinetic theory

Whenever the occupancy becomes less than ($f < 1/\lambda$) a description in terms of quasi particle excitations should also be applicable

$$\partial_t f(t, p) = C[f](t, p)$$

 \rightarrow Can study the effect of individual processes (e.g. 2 \leftrightarrow 2 or 2 \leftrightarrow 3 scattering)

 \rightarrow Overlap in the range of applicability

What happens during thermalization?

Early time dynamics (Preheating)

Inflaton field oscillates and begins to decay via a "parametric resonance" instability (Kofman. Linde. Starobinsky. Gacia-Bellido. Bovanovsky. Khlebnikov. Tkachev,...)

(Micha, Tkachev PRD 70 (2004) 043538)

Early time dynamics (Preheating)

(Micha, Tkachev PRD 70 (2004) 043538)

Early time dynamics (Preheating)

(Micha, Tkachev PRD 70 (2004) 043538)

10

Thermalization process (Reheating)

- The evolution becomes *self-similar* $f(p,t) = t^{\alpha} f_S(t^{\beta}p)$
- The thermalization process is described by a *quasi-stationary evolution* with *scaling exponents* Dynamic: α =-4/5 β =-1/5 Spectral: κ =-3/2

(Micha, Tkachev PRD 70 (2004) 043538)

11

Turbulent thermalization – Classical picture of wave turbulence

Richardson cascade

Kolmogorov spectra

Momentum / Wave number

• *Stationary scaling solution* associated to scale invariant energy flux

Uriel Frisch, "Turbulence. The Legacy of A. N. Kolmogorov."

Zakharov, V. E.; L'vov, V. S.; Falkovich, G, "Kolmogorov spectra of turbulence 1. Wave turbulence."

Turbulent thermalization – Wave turbulence in closed systems

VS.

"Driven" Turbulence – Kolmogorov wave turbulence

 Stationary scaling solution associated to scale invariant energy flux *"Free" Turbulence – Turbulent Thermalization*

closed system

- Quasi-stationary scaling solution
- Self-similar time evolution associated to energy transport towards the ultra-violet

Kinetic interpretation

 Search for self-similar scaling solutions of the Boltzmann equation

 $\partial_t f(p,t) = C[f](p,t) \xrightarrow{\text{scale invariance}} C[f](p,t) = t^{\mu} C[f_s](t^{\beta} p)$

• The dynamic *scaling exponents* are uniquely determined by

Classification scheme for relativistic field theories (Micha, Tkachev)

Independence of Initial conditions

 The turbulent scaling behavior is a property of the thermalization process – *independent of the underlying initial conditions*

 An effective memory loss occurs already at the early stages of the thermalization process

(Berges, Boguslavski, SS, Venugopalan arXiv:1312.5216)

15

Bose-Condensation far from equilibrium

 Dynamical formation of zero mode (Bose condensation) even the though the system is in the symmetric phase

(Berges, Sexty PRL 108 (2012) 161601 Berges, Boguslavski, SS, Venugopalan arXiv:1312.5216)

Turbulent thermalization

While *close to thermal equilibrium*, one may expect thermalization to occur as a *relaxation procedure* ...

Soeren Schlichting | Brookhaven National Lab

17

Turbulent thermalization

... The thermalization process for a system far from equilibrium proceeds as a *self-similar evolution* associated with the presence of a (classical) *turbulent attractor* ...

...until the occupancies become small $(f(p) \sim 1)$ and quantum effects can no longer be neglected.

18

Turbulent thermalization

The classical turbulent attractor is then no longer stable. The energy transfer to the ultra-violet has (parametrically) been accomplished at that time, system should be not too far from equilibrium.

 \rightarrow Quantum effects will drive the system to thermal equilibrium

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-08 10:22:07.828203 GMT(11:22:01 CEST)

Run / Event: 150431 / 541464

Thermalization process in heavy-ion collisions – a weak coupling perspective

General picture at weak coupling

Weakly coupled but strongly interacting

Early time dynamics

Initial state is highly anisotropic → *Plasma instabilities lead to exponential growth of low momentum modes* (c.f. Mrowczynski, Romatschke, Strickland, Rebhan, Atťems , Venugopalan, Epelbaum, Gelis, Fukushima, Berges, Sexty ...)

 \rightarrow Over-occupied plasma $f(p \lesssim Q_s) \sim 1/\alpha_s$ formed on a time scale $\tau \sim Q_s^{-1} \log^2(\alpha_s^{-1})$

Classical-statistical simulation with CGC initial conditions with the NLO spectrum of vacuum fluctuations (c.f. Epelbaum & Gelis) at weak coupling $\alpha_s \sim 10^{-6}$

Thermalization process at weak coupling

System is still far from equilibrium at times $\tau_0 = 1/Q_s \ln^2(1/\alpha_s)$

Different thermalization scenarios proposed in kinetic theory:

 Baier et al. (BMSS),
 Kurkela, Moore (KM),
 Blaizot et al. (BGLMV),

 PLB 502 (2001) 51-58
 JHEP 1111 (2011) 120
 Nucl. Phys. A 873 (2012) 68-80

Differences due the treatment of soft (non-perturbative) physics below m_D

23

Thermalization of the over-occupied QGP

Classical regime can be studied non-perturbatively within classical-statistical lattice simulations

Study thermalization process for a variety of different initial conditions which describe the the over-occupied plasma at initial time $\tau_0 = 1/Q_s \ln^2(1/\alpha_s)$

Over-occupation Momentum space anisotropy $f(p_T, p_Z, \tau_0) = \frac{n_0}{\alpha_s} \Theta(Q_s - \sqrt{p_T^2 + \xi_0^2 p_Z^2})$

(Berges, Boguslavski, SS, Venugopalan PRD 89 074011 & arXiv:1311.3005)

Soeren Schlichting | Brookhaven National Lab

24

$$\frac{10^{8}}{10^{6}} + \frac{n_{0}}{\alpha_{s}} + \frac{n_{0}}{\alpha_{s}} + \frac{10^{6}}{\alpha_{s}} + \frac{10^{6}}{\alpha$$

Bulk anisotropy

 Competition between interactions and longitudinal expansion leads to an *increase of the anisotropy*.

 Nevertheless the system remains significantly interacting throughout the entire evolution.

 The evolution becomes *insensitive* to the initial conditions and exhibits a universal scaling behavior at late times.

 $\boldsymbol{\xi}_{0}$ controls initial anisotropy

 n_0 controls initial over-occupancy

Single particle gluon spectra

Transverse spectrum quickly approaches 'thermal' like T/p_T shape, with decreasing amplitude Significant momentum broadening in the longitudinal direction observed.

Single particle gluon spectra

Transverse spectrum quickly approaches 'thermal' like T/p_T shape, with decreasing amplitude However not strong enough to compensate completely for the red shift due to the longitudinal expansion.

Self-similarity

The system reaches a non-thermal fixed point, where the space-time evolution becomes self-similar, i.e. $f(p_T, p_Z, \tau) = (Q\tau)^{\alpha} f_S((Q\tau)^{\beta} p_T, (Q\tau)^{\gamma} p_Z)$ with a **stationary distribution** f_S and scaling exponents $\alpha = -2/3, \beta = 0, \gamma = 1/3$ (Berges, Boguslavski, SS, Venugopalan PRD 89 074011 & arXiv:1311.3005)

Kinetic interpretation

Consider the Boltzmann equation

$$[\partial_{\tau} - \frac{p_Z}{\tau} \partial_{p_Z}] f(p_T, p_Z, \tau) = C[f](p_T, p_Z, \tau)$$

with a self-similar evolution

$$f(p_T, p_Z, \tau) = (Q\tau)^{\alpha} f_S((Q\tau)^{\beta} p_T, (Q\tau)^{\gamma} p_Z)$$

 \rightarrow Non-thermal fixed point solution $(f \gg 1)$

$$[\alpha + \beta p_T \partial_{p_T} + (\gamma - 1) p_Z \partial_{p_Z}] f_S(p_T, p_Z) = Q^{-1} C[f_S](p_T, p_Z)$$

→ Scaling exponents determined by scaling relations for

- Small angle elastic scattering $(2\alpha 2\beta + \gamma = -1)$
- Energy conservation $(\alpha 3\beta \gamma = -1)$
- Particle number conservation $(\alpha 2\beta \gamma = -1)$
- $\rightarrow \alpha = -2/3, \beta = 0, \gamma = 1/3$ in excellent agreement with lattice data!

Confirms "bottum-up" thermalization scenario (Baier et al. PLB 502 (2001) 51-58)

Comparison with weak-coupling thermalization scenarios

'Bottum up' scenario* emerges as a turbulent attractor of the evolution!

*Baier, Mueller, Schiff and Son, Phys. Lett. B 502, 51 (2001)

Thermalization process at weak coupling

The thermalization process again reaches a *turbulent attractor*, However at the end of the classical regime the system is *still far from equilibrium.*

Thermalization of the expanding plasma

Classical statistical simulations no longer applicable in the quantum regime. However kinetic theory predictions provide route to thermal equilibrium

Summary & Conclusions

Thermalization process of far from equilibrium systems is controlled by the *transport of conserved quantities* (energy and particle number) over a large separation of scales

→ Wave turbulence

Similar manifestations across far from equilibrium systems at all energy scales

Summary & Conclusions

Many open questions concerning the thermalization in high-energy heavy-ion collisions:

- How exactly does the thermalization process at weak coupling continue beyond the classical regime? (c.f. talks by Kurkela & Blaizot)

– Can weak coupling methods describe the bulk physics at RHIC/LHC where $\alpha_s \sim 0.3$? (c.f. work by Epelbaum & Gelis)

– Can one connect the weak coupling picture compare to strong coupling (AdS/CFT) picture?

While generally the thermalization process is much better understood in scalar models, there also remain some interesting questions e.g.

- Detailed dynamic of infrared sector and onset of Bose-Einstein condensation?

Matching classical Yang-Mills evolution to kinetic theory

Comparison between classical-statistical lattice and kinetic theory for non-expanding gauge theory

Abraao York, AK, Lu, Moore arXiv:1401.3751

 Kinetic theory can be extended straightforward to the quantum regime (c.f. talk by Kurkela)

Weak coupling methods at stronger couplings

+ Simulations based on CGC initial conditions with NLO spectrum of vacuum fluctuations

- Conceptual problems related to classical-statistical method:

Non-renormalizability of vacuum fluctuations?

Within the range of validity?

Epelbaum & Gelis PRL 111 (2013) 232301

Thermalization process at weak coupling

