
Photon and Dilepton Production in Semi-QGP 
and its effect on elliptic flow

Daisuke Satow (RIKEN, Japan/BNL, USA)

!

Collaborators:  Yoshimasa Hidaka (RIKEN, Japan)

Shu Lin (RIKEN-BNL, USA) 

Robert Pisarski (BNL, USA) 



Outline

2

•Introduction: Electromagnetic Probe, Semi-QGP 
!

•Dilepton Production 
!

•Photon Production 
!

•Effect on Photon v2



Electromagnetic Probe

3

Electromagnetic probe (lepton, photon) is 
phenomenologically important because

• Once generated, it goes out without interacting with medium. 
• It reflects the microscopic properties of medium like quark 

spectrum. 
• It also reflects the macroscopic properties like elliptic flow.
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Photon v2 puzzle: theory prediction of v2 is 
much smaller than experimental data

Theory: Rupa Chatterjee et al., PRC 
88, 034901 (2013) 

Experiment: PHENIX Collaboration, 
PRL 109, 122302 (2012).

CHATTERJEE, HOLOPAINEN, HELENIUS, RENK, AND ESKOLA PHYSICAL REVIEW C 88, 034901 (2013)
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FIG. 6. (Color online) Elliptic flow of thermal photons for 200A

GeV Au + Au collisions at RHIC from fluctuating and smooth IC for
σ = 0.4 fm. The v2(pT ) calculated with respect to the participant and
reaction planes for σ = 0.4 fm are shown by solid and dashed lines
(closed symbols), respectively. v2(PP) at σ = 1 fm is shown (solid
line with open symbols) for comparison.

B. Elliptic flow from final state average at RHIC

Figure 6 shows the elliptic flow of thermal photons from
fluctuating (FIC) and from smooth (SIC) initial-state-averaged
IC for 200A GeV Au + Au collisions at RHIC with σ = 0.4
and 1.0 fm. The elliptic flow of thermal photons from the
fluctuating IC is obtained by averaging over 200 random events
and the smooth initial density distribution is obtained by taking
an average of 10 000 fluctuating initial states [9]. Since in
the smooth case elliptic flow is calculated with respect to
the reaction plane, in order to make a fair comparison we
compare it with reaction plane elliptic flow, v2(RP), from
fluctuating case. With σ = 0.4 fm the E-by-E calculation gives
significantly larger elliptic flow for pT > 2.5 GeV/c and for
example at pT = 4 GeV/c, the v2(RP) is about 3 times larger
than the result from smooth IC and the difference increases for
larger values of pT . However, with σ = 1.0 fm the increase
in v2 disappears. This behavior was expected based on our
studies above with one single event.

Elliptic flow calculated with respect to the participant plane
[v2(PP)] is even larger than the reaction plane v2 in the entire
pT range shown in the figure. This behavior is similar to
the hadronic case [1] and this happens because the initial
eccentricity is larger for the participant plane compared to
the reaction plane. However, the difference between these two
reference planes seems to have some pT dependence and a
detailed investigation is required to understand this better.

We compare our results for thermal photon elliptic flow
from the fluctuating IC with PHENIX data [16] in Fig. 7.
We see that the PHENIX data lie well above the results from
our hydrodynamic calculations. Fluctuations clearly bring the
theory towards experiment above pT = 2.5 GeV/c, but still
below pT = 4 GeV/c the measured values are larger than
our calculation. Here, in discussing the thermal photons only,
we have neglected all other sources of direct photons which
will make the total photon v2 from theory calculation even
smaller [13].
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FIG. 7. (Color online) Thermal photon pT spectra for 200A GeV
Au + Au collisions at RHIC from fluctuating and smooth IC and
comparison with PHENIX experimental data [16].

C. Inclusion of prompt photons

As discussed earlier, the presence of prompt photons in
the direct photon spectrum decreases the elliptic flow. The
corrected spectra and elliptic flow taking also the prompt
photons into account are shown in Fig. 8. The PHENIX direct
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FIG. 8. (Color online) (a) Direct photon spectra for 200A GeV
Au + Au collisions at RHIC and for 20–40% centrality bin [28] along
with prompt (direct + fragmentation) and thermal (fluctuating (FIC)
and smooth (SIC) initial density distributions) contributions. (b) v2

with (solid) and without (dotted) the prompt photon contribution for
smooth and fluctuating IC.
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Electromagnetic Probe

One possible solution: 
considering  

(partial) confinement effect
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In QGP, Polyakov loop is used as (quasi) 
order parameter of deconfinement transition. 

l=1 Deconfined

l=0 Confined
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I. INTRODUCTION

This paper is organized as follows: In the next section,
we introduce a simple model in which the Polyakov loop
effect is taken into account. We calculate the dilepton
production rate whose invariant mass is hard, in Sec. III.
Section IV is devoted to the calculation of the real and
hard photon production rate. We summarize this paper
and give concluding remarks in the last section. Ap-
pendix ?? is devoted to detailed derivation of some re-
sults used in the text.

II. BACKGROUND GLUON FIELD

To introduce the effect of nontrivial Polyakov loop in
perturbative calculation, we work in an effective model
introduced in Ref. [2]. The Lagrangian of that model is
the same as that in QCD with Nc color, but we assume
that the temporal component of the background gluon
field (A0) is finite. A0 is given by

A0 =
i

g
diag(Q1, Q2, ..., QNc), (2.1)

where g is the coupling constant. Here we have assumed
that A0 is diagonal and does not depend on space and
time. The spatial components of the background gluon
field, Ai, are zero. We note that Qa satisfies

∑

i Q
i = 0

due to the tracelessness of the gauge field. Also, when
we neglect the fluctuation effect of A0, this quantity is
related to the expectation value of the Polyakov loop (l)
by

l ≡
1

Nc
TrL =

1

Nc

∑

a

eiβQ
a

, (2.2)

where

L(x⃗) ≡

〈

P exp

(

∫ β

0
dτgA0(τ, x⃗)

)〉

(2.3)

is the Wilson line in the temporal direction in imaginary
time, with β ≡ 1/T and P is path ordering.

∗Electronic address: daisuke.sato@riken.jp

When we do perturbative calculation in this model,
the background gluon field works as imaginary chemical
potential coupled with color charge. The distribution
functions for the quark and the gluon, n(k0) ≡ (eβk

0

+

1)−1 and N(k0) ≡ (eβk
0 − 1)−1, are modified as [2]

na(k
0) =

1

eβ(k0−iQa) + 1
, (2.4)

Nab(k
0) =

1

eβ(k0−iQab) − 1
, (2.5)

where a and b are color indices in the double line nota-
tion [2, 6], running from 1 to Nc, and Qab ≡ Qa − Qb.
It seems that the distribution functions have imaginary
parts, but after we sum over color index, we find that
they are real. Let us see this property in quark distribu-
tion function:

⟨na(k
0)⟩ =

∞
∑

n=1

(−1)n+1e−βk0nln, (2.6)

where we have introduced ⟨ga⟩ ≡
∑Nc

a=1 ga/Nc and ln ≡
TrLn/Nc. Since ln is real, we see that ⟨na(k0)⟩ is real.
Let us see that the distribution functions above are

suppressed in confined phase. From Eq. (2.6), the av-
eraged quark distribution function in the confined phase
becomes

⟨na(k
0)⟩ =

1

eβNck0 + 1
. (2.7)

Here we have used

ln =

{

(−1)k(Nc+1) (n = kNc)
0 (otherwise)

(2.8)

in the confined phase. We see that this quantity is sup-
pressed compared with the one at Qa = 0, and vanishes
at large Nc. Sometimes this property is called statistical
confinement []. The gluon distribution function is also
suppressed after taking color sum.
When Nc = 3, Qa can be written as

Qa = (−Q, 0, Q), (2.9)

where 0 < Q < 2πT . We note that there is only one
independent quantity, denoted by Q, in this case. The
relation to l reads

l =
1 + 2 cosβQ

3
. (2.10)
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0 < l < 1 even around ~2Tc.

It is necessary to consider effect 
of nontrivial l even in QGP phase.

(Semi-QGP)

Lattice QCD: A. Bazavov et al., 
PRD 80, 014504 (2009) 
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Simple model to analyze effect of Polyakov loop in 
perturbative computation:

Y. Hidaka and R. D. Pisarski, PRD 80, 036004 (2009) 

cf: PNJL model: integrate out gluon  K. Fukushima, Phys. Lett. B 591, 277 (2004)

ghost field, ja! the external current, and " ( !") the external
(anti)fermion source, respectively.

The Lagrangian of QCD is defined as

L½a;c ; !c "¼ i
XNf

j¼1

!c j 6D½a"c j$
1

4
F!#a½a"Fa

!#½a"; (2.2)

where Fa
!# % @!a

a
# $ @#a

a
! $ gfabcab!a

c
# is the field

strength, D!½a" % @! þ igaa!t
a the covariant derivative

in the fundamental representation, ta (a ¼ 1; . . .N2 $ 1)
the generator of the SUðNÞ group in the fundamental
representation, fabc the structure constant of the SUðNÞ
group, respectively. We note that Nf, the flavor number,
and N, the color number, are not specified in this paper,
because we want to see how the expressions of the prop-
erties of the ultrasoft mode, which will be analyzed in
Sec. III, depend on N and Nf. In the real world, N ¼ 3.
Since we are considering the case that the quark current
mass is negligible in every flavor, we drop the index for the
flavor from now on.

We adopt the temporal gauge fixing, which was used in
the analysis based on the resummed perturbation [4]. In
this gauge-fixing, the Faddeev-Popov term is

L FP ¼ $$
ð ~Ga½a"Þ2

2
$ !%a

!
@0
g
&ab $ fadbðAþ aÞd0

"
%b;

(2.3)

where the gauge-fixing function is ~Ga½a" ¼ aa0 with
$ ! 1, which is equivalent to the following constraint:

aa0 ¼ 0: (2.4)

We note that the possible gauge-fixing dependence needs
to be checked apart from the covariance with respect to
the background gauge transformation, which will be
introduced later.

In the background field gauge method, we impose the
following conditions:

haa!i ¼ hc i ¼ h !c i ¼ 0: (2.5)

Aa
!, ' ( !') become equal to the gluon and the (anti)quark

average field after imposing these conditions [23].

We note that the action in Eq. (2.1) is invariant under the
following transformation [21]:

'ðxÞ ! hðxÞ'ðxÞ; !'ðxÞ ! !'ðxÞhyðxÞ;
c ðxÞ ! hðxÞc ðxÞ; !c ðxÞ ! !c ðxÞhyðxÞ;

Aa
!ðxÞta ! hðxÞAa

!ðxÞtahyðxÞ $
i

g
h@!h

yðxÞ;

aa!ðxÞta ! hðxÞaa!ðxÞtahyðxÞ;
ja!ðxÞta ! hðxÞja!ðxÞtahyðxÞ; "ðxÞ ! hðxÞ"ðxÞ;

!"ðxÞ ! !"ðxÞhyðxÞ; %aðxÞta ! hðxÞ%aðxÞtahyðxÞ;
!%aðxÞta ! hyðxÞ !%aðxÞtahðxÞ; (2.6)

where hðxÞ % exp ½i(aðxÞta".

B. Derivation

We consider the following situation: The system is at
equilibrium in which the temperature is T before the initial
time t0. Then, external quark, antiquark, and gluon external
sources disturb the system, and hence the system becomes
a nonequilibrium state. In this paper, we focus on the case
where the external fermion source is so weak that we need
to retain only the contributions that are in the linear order in
the magnitude of the fermionic average field ' to the
induced fermion source, which will be introduced later.
Due to the linear response theory, analysis in such situation
is equivalent to the computation of the fermion propagator
with ultrasoft momentum at equilibrium. We note, how-
ever, that the induced fermion source contains all the order
contributions in Aa

! in our approximation, in which we
have a good machinery to compute the n-point function
whose external lines are two ultrasoft quarks and (n$ 2)
ultrasoft gluons, not only the ultrasoft fermion propagator.
In this sense, we are going to analyze the region which is
beyond the linear response regime. The derivation will be
performed in a similar way to that in Refs. [12,20]: we will
apply the gradient expansion and the weak coupling ap-
proximation to the Kadanoff-Baym equation [21,22]. We
note that both of them are justified by the smallness of the
coupling constant, as we will see later.
By performing an infinitesimal variation of the integral

variable in Eq. (2.1), we get the following equations:

hi 6Dx½Aþ a"ð'þ c ÞðxÞi ¼ "ðxÞ; (2.7)

hð ~D#½Aþ a"ÞabFb#
!½Aþ a" $ ghð !'þ !c Þta)!ð'þ c Þi

$ fabcg0!h !%b%ci ¼ ja!ðxÞ: (2.8)

Here ~D!½a" % @! þ igaa!T
a is the covariant derivative in

the adjoint representation, where ðTaÞbc % $ifabc is the
generator of the SUðNÞ group in the adjoint representation.
By imposing Eq. (2.5), we get the following equations of
motion for the average fields:

FIG. 2. The contour C in the complex x0 plane.

ULTRASOFT FERMION MODE AND OFF-DIAGONAL . . . PHYSICAL REVIEW D 87, 096011 (2013)

096011-3

a0→A0+a0

QCD Lagrangian + background gluon
(quark ψ, gluon fluctuation a) (A0)

(A0)
ab =

�abQa

g
= (Q,�Q, 0)/g
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After removing perturbative correction to l, background 
gluon is obtained from l obtained from lattice calculation.

3
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FIG. 1: Left panel: The Polyakov loop (l) determined from the lattice calculation [5], the Polyakov loop in which the perturbative
correction is removed (l0) as a function of T . Right panel: Q as a function of T . We set Λ

MS
= Tc/1.35, where Tc = 170 MeV.

FIG. 2: The 1 to 2 process which results the production of
dilepton. The solid line denotes the quark while the wavy line
denotes the photon.

At |p| = 0, the expression is reduced to the following
simple form:

fll(Q) =
1

n2(p0/2)

〈

na

(

p0

2

)

na

(

p0

2

)〉

, (3.7)

dΓ

d4p

∣

∣

∣

∣

Q=0

=
α2

6π4
Nc

∑

f

q2f

[

n

(

p0

2

)]2

. (3.8)

It is because that at |p| = 0, the two momenta are deter-
mined uniquely as k1 = −k2 with E1 = E2 = p0/2, and
thus the momentum integration vanishes.

When Nc = Nf = 3, fll becomes

fll(Q) =

[

1 +
2T

3|p|
ln

1 + 3le−βk+ + 3le−2βk+ + e−3βk+

1 + 3le−βk− + 3le−2βk− + e−3βk−

]

×
[

−1 +
2T

|p|
ln

n−

n+

]−1

,

(3.9)

The production rate at Q = 0 is given by substituting
∑

f q
2
f = 2/3 in Eq. (3.6).

B. results and physical interpretation

By using Eq. (3.9) and l0 extracted from the lattice
data, we can plot fll. We plot that quantity at |p| = 0
and p0 = 1 GeV in Fig. 3. We see that the dilepton
production rate is not suppressed, even enhanced slightly
due to the Polyakov loop effect. Actually, it is possible to
show explicitly that fll > 1 in arbitrary Q when Nc = 3
in analytical way: From Eqs. (2.9) and (3.7), we get

fll(Q) =
1

3

[

1 +
2

1 + 2XA/(X + 1)2

]

, (3.10)

where X ≡ eβp
0/2 and A ≡ cosβQ − 1. By using

X > 1 and −1 < A < 0, it is easily shown that fll
is always larger than unity, and its maximum value is
1 + 4X/(3(X2 + 1)).
We note that, previously, the effect of background A0

to the dilepton production rate was calculated [19] up to
quadratic order in terms of A0. By expanding our result
Eq. (3.5) up to the quadratic order, we get

fll(Q) = 1−
∑

a

Q2
a
[n+(1− n+)− n−(1 − n−)]

NcT [−|p|+ 2T ln(n−/n+)]
, (3.11)

which agrees with the result in Ref. [19].
The non-suppression of the dilepton production rate

contradicts the expectation because, naively, it seems
that this quantity is suppressed since the quark and the
anti-quark are confined and thus the 2 to 1 process shown
in Fig. 2 tends to be suppressed. Now we discuss the in-
terpretation of the absence of the dilepton production
suppression. Let us focus on |p| = 0 case, in which the
result is transparent, and large Nc limit, which makes the
distribution functions of the quark and the gluon vanish
in the confinement limit. In this case, fll in the confined
phase becomes

fll(Q) =
N(p0)

n2(p0/2)
, (3.12)

remove 
perturbative 
correction
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When we do perturbative calculation in this model,
the background gluon field works as imaginary chemical
potential coupled with color charge. The distribution
functions for the quark and the gluon, n(k0) ≡ (eβk

0

+

1)−1 and N(k0) ≡ (eβk
0 − 1)−1, are modified as [2]

na(k
0) =

1

eβ(k0−iQa) + 1
, (2.4)

Nab(k
0) =

1

eβ(k0−iQab) − 1
, (2.5)

where a and b are color indices in the double line nota-
tion [2, 6], running from 1 to Nc, and Qab ≡ Qa − Qb.
It seems that the distribution functions have imaginary
parts, but after we sum over color index, we find that
they are real. Let us see this property in quark distribu-
tion function:

⟨na(k
0)⟩ =

∞
∑

n=1

(−1)n+1e−βk0nln, (2.6)

where we have introduced ⟨ga⟩ ≡
∑Nc

a=1 ga/Nc and ln ≡
TrLn/Nc. Since ln is real, we see that ⟨na(k0)⟩ is real.
Let us see that the distribution functions above are

suppressed in confined phase. From Eq. (2.6), the av-
eraged quark distribution function in the confined phase
becomes

⟨na(k
0)⟩ =

1

eβNck0 + 1
. (2.7)

Here we have used

ln =

{

(−1)k(Nc+1) (n = kNc)
0 (otherwise)

(2.8)

in the confined phase. We see that this quantity is sup-
pressed compared with the one at Qa = 0, and vanishes
at large Nc. Sometimes this property is called statistical
confinement []. The gluon distribution function is also
suppressed after taking color sum.
When Nc = 3, Qa can be written as

Qa = (−Q, 0, Q), (2.9)

where 0 < Q < 2πT . We note that there is only one
independent quantity, denoted by Q, in this case. The
relation to l reads

l =
1 + 2 cosβQ

3
. (2.10)

2

In the complete deconfined phase (l = 1), Q = 0 while
Q = 2πT/3 in the complete confined phase in the pure
glue case (l = 0).

Strictly speaking, A0 and thus Qa should be deter-
mined dynamically, but in this paper, we determine these
quantities from the lattice QCD data in the following
way [4]: First, we remove the perturbative correction [8]
from the Polyakov loop so that we treat only the Polyakov
loop generated by nonperturbative effect, as

l(Q = 0) = 1 + δl(Q = 0), (2.11)

δl(Q = 0) =
g2CfmD

8πT
+

g4Cf

(4π)2

[

−
Nf

2
ln 2

+Nc

(

ln
mD

T
+

1

4

)

]

+O(g5), (2.12)

where Cf ≡ (N2
c − 1)/(2Nc), mD is the Debye mass of

the gluon, and Nf is the number of the flavor. We use
the running coupling constant calculated in the modified
minimal subtraction scheme at ?-loop order [], and the
expression of the Debye mass at ?-loop order []:

g2 = 24π2

[

(11Nc − 2Nf )

{

ln

(

4πT

ΛMS

)

− γE

}

+Nf(4 ln 2− 1)−
11Nc

2

]−1

, (2.13)

m2
D = (2Nc +Nf)4π

2T 2

[

(11Nc − 2Nf)

×
{

ln

(

4πT

ΛMS

)

− γE

}

+ 4Nf ln 2−
5N2

c +N2
f + 9Nf/(2Nc)

2Nc +Nf

]−1

,

(2.14)

where ΛMS is the renormalization mass scale in the modi-
fied minimal subtraction scheme and γE ≃ 0.57721 is the
Euler’s constant. D. S.: These two equations need
to be checked. From Eq. (2.11), we see that l(Q = 0)
exceeds unity, which is realized due to the renormaliza-
tion effect. Now we assume the following relation, which
is reduced to Eq. (2.11) at Q = 0 and δl ≪ 1:

l(Q) = eδl(Q=0)l0(Q). (2.15)

From l calculated from the lattice QCD [5], we can calcu-
late l0 from Eq. (2.15), and then obtain Q from Eq. (2.10)
by using l0. These quantities are plotted in Fig. 1, by set-
ting ΛMS = Tc/1.35. We see that l0 is different from unity
even around ∼ 3Tc, where Tc is the pseudo-critical tem-
perature, which is approximately 170 MeV in the lattice
calculation [5] cited in this paper.

III. DILEPTON PRODUCTION RATE

A. calculation

We calculate the production rate of dilepton in Qa ̸= 0
case in this subsection. The dilepton production rate at
the leading order in the coupling constant in QED (e) can
be expressed in terms of the photon self-energy (Π<

µν) [7]:

dΓ

d4p
= −

α

24π4p2
Π<µ

µ (p), (3.1)

where p ≡ p1+p2 with p1 and p2 are the momenta of the
two leptons, and α ≡ e2/(4π). We note that, since the
leptons are real (p21 = p22 = 0), p is time-like (p2 > 0). In
this paper, we focus on the case that p0 > 0.
At the leading order in g, the contribution is obtained

by the 2 to 1 process, which is shown in Fig. 2. Its
expression reads

Π<µ
µ (p) = −

∑

a,f,spin

∫

d3k1

(2π)3
1

2E1

∫

d3k2

(2π)3
1

2E2

× |M|2(2π)4δ(4)(p− k1 − k2)na(E1)na(E2),
(3.2)

where f is a subscript for flavor running from 1 to Nf ,
Ei ≡ |pi|, and na(E) ≡ (eβ(E+iQa) + 1)−1 is the dis-
tribution function for anti-quark. The square of matrix
element is

∑

spin

|M|2 = 8e2q2fk1 · k2

= 4e2q2fp
2,

(3.3)

where we have used k21 = k22 = 0, and qf is the electro-
magnetic charge of the quark with flavor f in the unit of
e. After straightforward calculation, it results

dΓ

d4p
= fll(Q)

dΓ

d4p

∣

∣

∣

∣

Q=0

, (3.4)

where the suppression factor is given by

fll(Q) =

〈

1 +
2T

|p|
ln

1 + e−β(k+−iQa)

1 + e−β(k−−iQa)

〉

×
[

−1 +
2T

|p|
ln

n−

n+

]−1

,

(3.5)

which satisfies fll(0) = 1. Here k± ≡ (p0 ± |p|)/2 and
n± ≡ n(k±). The value at Q = 0 is [9]

dΓ

d4p

∣

∣

∣

∣

Q=0

=
α2

12π4
Nc

∑

f

q2fN(p0)

(

−1 +
2T

|p|
ln

n−

n+

)

.

(3.6)
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where ΛMS is the renormalization mass scale in the modi-
fied minimal subtraction scheme and γE ≃ 0.57721 is the
Euler’s constant. D. S.: These two equations need
to be checked. From Eq. (2.11), we see that l(Q = 0)
exceeds unity, which is realized due to the renormaliza-
tion effect. Now we assume the following relation, which
is reduced to Eq. (2.11) at Q = 0 and δl ≪ 1:

l(Q) = eδl(Q=0)l0(Q). (2.15)

From l calculated from the lattice QCD [5], we can calcu-
late l0 from Eq. (2.15), and then obtain Q from Eq. (2.10)
by using l0. These quantities are plotted in Fig. 1, by set-
ting ΛMS = Tc/1.35. We see that l0 is different from unity
even around ∼ 3Tc, where Tc is the pseudo-critical tem-
perature, which is approximately 170 MeV in the lattice
calculation [5] cited in this paper.
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Strictly speaking, A0 and thus Qa should be deter-
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quantities from the lattice QCD data in the following
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loop generated by nonperturbative effect, as
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where ΛMS is the renormalization mass scale in the modi-
fied minimal subtraction scheme and γE ≃ 0.57721 is the
Euler’s constant. D. S.: These two equations need
to be checked. From Eq. (2.11), we see that l(Q = 0)
exceeds unity, which is realized due to the renormaliza-
tion effect. Now we assume the following relation, which
is reduced to Eq. (2.11) at Q = 0 and δl ≪ 1:

l(Q) = eδl(Q=0)l0(Q). (2.15)

From l calculated from the lattice QCD [5], we can calcu-
late l0 from Eq. (2.15), and then obtain Q from Eq. (2.10)
by using l0. These quantities are plotted in Fig. 1, by set-
ting ΛMS = Tc/1.35. We see that l0 is different from unity
even around ∼ 3Tc, where Tc is the pseudo-critical tem-
perature, which is approximately 170 MeV in the lattice
calculation [5] cited in this paper.
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where ΛMS is the renormalization mass scale in the modi-
fied minimal subtraction scheme and γE ≃ 0.57721 is the
Euler’s constant. D. S.: These two equations need
to be checked. From Eq. (2.11), we see that l(Q = 0)
exceeds unity, which is realized due to the renormaliza-
tion effect. Now we assume the following relation, which
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late l0 from Eq. (2.15), and then obtain Q from Eq. (2.10)
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even around ∼ 3Tc, where Tc is the pseudo-critical tem-
perature, which is approximately 170 MeV in the lattice
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assumption (              )g: running coupling at one-loop
mD: Debye mass of gluon 
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dilepton production)
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]−1

,

(2.14)

where ΛMS is the renormalization mass scale in the modi-
fied minimal subtraction scheme and γE ≃ 0.57721 is the
Euler’s constant. D. S.: These two equations need
to be checked. From Eq. (2.11), we see that l(Q = 0)
exceeds unity, which is realized due to the renormaliza-
tion effect. Now we assume the following relation, which
is reduced to Eq. (2.11) at Q = 0 and δl ≪ 1:

l(Q) = eδl(Q=0)l0(Q). (2.15)

From l calculated from the lattice QCD [5], we can calcu-
late l0 from Eq. (2.15), and then obtain Q from Eq. (2.10)
by using l0. These quantities are plotted in Fig. 1, by set-
ting ΛMS = Tc/1.35. We see that l0 is different from unity
even around ∼ 3Tc, where Tc is the pseudo-critical tem-
perature, which is approximately 170 MeV in the lattice
calculation [5] cited in this paper.

III. DILEPTON PRODUCTION RATE

A. calculation

We calculate the production rate of dilepton in Qa ̸= 0
case in this subsection. The dilepton production rate at
the leading order in the coupling constant in QED (e) can
be expressed in terms of the photon self-energy (Π<

µν) [7]:

dΓ

d4p
= −

α

24π4p2
Π<µ

µ (p), (3.1)

where p ≡ p1+p2 with p1 and p2 are the momenta of the
two leptons, and α ≡ e2/(4π). We note that, since the
leptons are real (p21 = p22 = 0), p is time-like (p2 > 0). In
this paper, we focus on the case that p0 > 0.
At the leading order in g, the contribution is obtained

by the 2 to 1 process, which is shown in Fig. 2. Its
expression reads

Π<µ
µ (p) = −

∑

a,f,spin

∫

d3k1

(2π)3
1

2E1

∫

d3k2

(2π)3
1

2E2

× |M|2(2π)4δ(4)(p− k1 − k2)na(E1)na(E2),
(3.2)

where f is a subscript for flavor running from 1 to Nf ,
Ei ≡ |pi|, and na(E) ≡ (eβ(E+iQa) + 1)−1 is the dis-
tribution function for anti-quark. The square of matrix
element is

∑

spin

|M|2 = 8e2q2fk1 · k2

= 4e2q2fp
2,

(3.3)

where we have used k21 = k22 = 0, and qf is the electro-
magnetic charge of the quark with flavor f in the unit of
e. After straightforward calculation, it results

dΓ

d4p
= fll(Q)

dΓ

d4p

∣

∣

∣

∣

Q=0

, (3.4)

where the suppression factor is given by

fll(Q) =

〈

1 +
2T

|p|
ln

1 + e−β(k+−iQa)

1 + e−β(k−−iQa)

〉

×
[

−1 +
2T

|p|
ln

n−

n+

]−1

,

(3.5)

which satisfies fll(0) = 1. Here k± ≡ (p0 ± |p|)/2 and
n± ≡ n(k±). The value at Q = 0 is [9]

dΓ

d4p

∣

∣

∣

∣

Q=0

=
α2

12π4
Nc

∑

f

q2fN(p0)

(

−1 +
2T

|p|
ln

n−

n+

)

.

(3.6)
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dinary perturbation theory, except that the background
field Acl

0

acts like an imaginary chemical potential for
color. For a quark with color a, the Fermi-Dirac dis-
tribution function is 1/(e(E�iQa

)/T + 1). In the double
line basis gluons carry two color indices, (ab), and their
Bose-Einstein distribution function involves a di↵erence
of Q’s, 1/(e(E�i(Qa�Qb

))/T � 1). In the Boltzmann ap-
proximation, the distribution function for a single quark
(or anti-quark), summed over color, is suppressed by the
Polyakov loop, ⇠

P
a e

�(E�iQa
)/T /Nc ⇠ e�E/T `; for glu-

ons, it is ⇠ e�E/T `2.
In the semi-QGP model, one then computes to leading

order in the QCD coupling with Qa 6= 0 [3, 4]. We first
discuss the results for thermal dilepton production. Let
the sum of the momenta of the dilepton be Pµ = (E, ~p ),
p = |~p |, where E > p. To leading order in perturbation
theory, this arises from the annihilation of a quark anti-
quark pair into a virtual photon, which then decays into a
dilepton pair. For three colors and Q = 0, the production
rate [13] is

d�

d4P

����
Q=0

=
↵em

6⇡4

n(E)

✓
1� 2T

p
ln

1 + e�p�/T

1 + e�p+/T

◆
; (1)

p± = (E ± p)/2, and n(E) = 1/(eE/T � 1) is the Bose-
Einstein distribution function. This includes the contri-
butions of (massless) up, down and strange quarks, with
↵em = e2/4⇡ the electromagnetic coupling constant.

In the semi-QGP, to leading order the result when Q 6=
0 is a simple factor times that for Q = 0 [18],

d�

d4P

����
Q 6=0

= fll(Q)
d�

d4P

����
Q=0

, (2)

where fll(Q) ⌘ efll(Q)/ efll(0). For three colors, this can
be written in terms of the Polyakov loop,

efll = 1� 2T

3p
ln

1 + 3`e�p�/T + 3`e�2p�/T + e�3p�/T

1 + 3` e�p+/T + 3`e�2p+/T + e�3p+/T
.

(3)
In the special case that the dileptons move back to

back, p = 0, we plot the modification factor at E =
1 GeV as a function of temperature in Fig. (1), taking
the Qa’s from Ref. [4]. We find that fll(Q) is always
greater than one.

To understand this, remember that in kinetic theory
the production rate for dileptons is the product of sta-
tistical distribution functions times an amplitude. When
p = 0, the distribution functions are for a quark with
energy E/2 and color a, and an anti-quark, also with en-
ergy E/2 and color a. If the total energy E � T , we can
use the Boltzmann approximation for the Qa-dependent
Fermi-Dirac distribution functions,

e2
NX

a=1

e�(E/2�iQa
)/T e�(E/2+iQa

)/T
��Mll

��2 . (4)

As the Qa’s are like a chemical potential for color, they
enter the distribution functions for the quark and anti-
quark with opposite signs, and so at large energy, cancel
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FIG. 1. The ratio of the thermal production of dileptons and
photons in the semi-QGP, versus that in perturbation theory,
as a function of temperature. For dileptons, fll from Eq. (3)
is for E = 1 GeV and p = 0. For photons, f� in Eq. (7)
is independent of the photon momentum. The loop is taken
from Ref. [4].

identically. That is, the probability for a hard virtual
photon to produce a quark anti-quark pair is independent
of the Qa’s, and so the Polyakov loop. This is in stark
contrast to the probability to produce a single quark or
anti-quark, which is ⇠ `.
Figure (1) shows that for moderate values of E ⇠ T ,

there are corrections to the Boltzmann approximation
which even give a modest enhancement above Tc, by
about ⇠ 20%.
Expanding only to quadratic order in the Qa is equiv-

alent to considering a condensate ⇠ htrA2

0

i. Expanding
Eq. (3) to ⇠

P
a(Q

a)2 gives a result in agreement with
Ref. [11]. They argued that a similar enhancement could
explain the excess of dileptons found below the ⇢ meson
mass in heavy ion collisions; see, also, Ref. [12].
We now consider the production of real photons at a

large momentum Pµ, where E = p � T . To leading
order in the QCD coupling, g, there are two processes
which contribute to photon production: Compton scat-
tering of a quark or anti-quark, and the pair annihilation
of a quark and an anti-quark. These 2 ! 2 processes [9]
are both ⇠ e2g2. However, a quark which scatters with
an arbitrary number of soft gluons, with E

soft

⇠ gT ,
emits collinear photons at the same order, ⇠ e2g2. [10].
This depends crucially upon Bose-Einstein enhancement
for the soft gluon, as n(E

soft

) ⇠ 1/g.
In the semi-QGP, however, there is no Bose-Einstein

enhancement for for o↵-diagonal gluons: at small E the
gluon distribution function is ⇠ 1/(e�i(Qa�Qb

)/T � 1), if
a 6= b and Qa � Qb ⇠ T . There is Bose-Einstein en-
hancement for soft, diagonal gluons, where a = b, but at
large Nc there are only ⇠ Nc diagonal gluons to ⇠ N2

c
o↵-diagonal gluons.
Consequently in the semi-QGP at large Nc, up to cor-

rections ⇠ 1/Nc, the production of real photons is domi-
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I. INTRODUCTION

This paper is organized as follows: In the next section,
we introduce a simple model in which the Polyakov loop
effect is taken into account. We calculate the dilepton
production rate whose invariant mass is hard, in Sec. III.
Section IV is devoted to the calculation of the real and
hard photon production rate. We summarize this paper
and give concluding remarks in the last section. Ap-
pendix ?? is devoted to detailed derivation of some re-
sults used in the text.

II. BACKGROUND GLUON FIELD

To introduce the effect of nontrivial Polyakov loop in
perturbative calculation, we work in an effective model
introduced in Ref. [2]. The Lagrangian of that model is
the same as that in QCD with Nc color, but we assume
that the temporal component of the background gluon
field (A0) is finite. A0 is given by

A0 =
i

g
diag(Q1, Q2, ..., QNc), (2.1)

where g is the coupling constant. Here we have assumed
that A0 is diagonal and does not depend on space and
time. The spatial components of the background gluon
field, Ai, are zero. We note that Qa satisfies

∑

i Q
i = 0

due to the tracelessness of the gauge field. Also, when
we neglect the fluctuation effect of A0, this quantity is
related to the expectation value of the Polyakov loop (l)
by

l ≡
1

Nc
TrL =

1

Nc

∑

a

eiβQ
a

, (2.2)

where

L(x⃗) ≡

〈

P exp

(

∫ β

0
dτgA0(τ, x⃗)

)〉

(2.3)

is the Wilson line in the temporal direction in imaginary
time, with β ≡ 1/T and P is path ordering.

∗Electronic address: daisuke.sato@riken.jp

When we do perturbative calculation in this model,
the background gluon field works as imaginary chemical
potential coupled with color charge. The distribution
functions for the quark and the gluon, n(k0) ≡ (eβk

0

+

1)−1 and N(k0) ≡ (eβk
0 − 1)−1, are modified as [2]

na(k
0) =

1

eβ(k0−iQa) + 1
, (2.4)

Nab(k
0) =

1

eβ(k0−iQab) − 1
, (2.5)

where a and b are color indices in the double line nota-
tion [2, 6], running from 1 to Nc, and Qab ≡ Qa − Qb.
It seems that the distribution functions have imaginary
parts, but after we sum over color index, we find that
they are real. Let us see this property in quark distribu-
tion function:

⟨na(k
0)⟩ =

∞
∑

n=1

(−1)n+1e−βk0nln, (2.6)

where we have introduced ⟨ga⟩ ≡
∑Nc

a=1 ga/Nc and ln ≡
TrLn/Nc. Since ln is real, we see that ⟨na(k0)⟩ is real.
Let us see that the distribution functions above are

suppressed in confined phase. From Eq. (2.6), the av-
eraged quark distribution function in the confined phase
becomes

⟨na(k
0)⟩ =

1

eβNck0 + 1
. (2.7)

Here we have used

ln =

{

(−1)k(Nc+1) (n = kNc)
0 (otherwise)

(2.8)

in the confined phase. We see that this quantity is sup-
pressed compared with the one at Qa = 0, and vanishes
at large Nc. Sometimes this property is called statistical
confinement []. The gluon distribution function is also
suppressed after taking color sum.
When Nc = 3, Qa can be written as

Qa = (−Q, 0, Q), (2.9)

where 0 < Q < 2πT . We note that there is only one
independent quantity, denoted by Q, in this case. The
relation to l reads

l =
1 + 2 cosβQ

3
. (2.10)

n(k0)
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nated by 2 ! 2 processes. This is a straightforward gen-
eralization of the original computations of Ref. [9]. The
results for collinear emission at large Nc will be given
later [18].

Computing thermal photon production only to leading
logarithmic order, we find [18]

E
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d3p

����
Q 6=0

= f�(Q) E
d�

d3p

����
Q=0

. (5)

At the same order, the result for 2 ! 2 scattering in the
perturbative regime [9] is
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g2T

◆
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where ↵s = g2/(4⇡), and

f�(Q) = 1� 4 q +
10

3
q2 ; q =

Q

2⇡T
, 0 < q < 1. (7)

In the perturbative limit, f�(0) = 1. This function de-
creases monotonically as Q increases, with f�(2⇡T/3) =
1/27 in the confined phase. In Fig. (1) we plot f� versus
temperature. This result is independent of momentum
when E � T .

Why photon production is strongly suppressed in the
confined phase can be understood from the case of pair
annihilation. Using kinetic theory in the Boltzmann ap-
proximation, photon production is proportional to

e2 g2
X

a,b

e�(E1�iQa
)/T e�(E2+iQb

)/T |Mab
� |2 , (8)

where E
1

is the energy of the incoming quark with color
a, E

2

the energy of the anti-quark with color b, and Mab
�

a matrix element, which depends upon a and b. The
quark and anti-quark then scatter into a gluon, with color
indices (ab), and a photon. In the deconfined phase, the
rate is⇠ e2g2N2

c ; at largeNc, keeping g2Nc fixed this is⇠
e2Nc, like dilepton production in Eq. (4). In the confined
phase, however, to avoid suppression by powers of the
Polyakov loop the color charges of the quark and anti-
quark must match up, with a = b. This reduces the result
by one factor of 1/Nc. Further, the matrix element Mab

�
involves the quark-gluon vertex; when a = b, this gives
another factor of 1/Nc, for an overall factor of 1/N2

c . The
same counting in 1/Nc applies for Compton scattering.
In all, at large Nc the ratio of hard photon production
in the confined phase, to that in the deconfined phase, is
f� = 1/(3N2

c ) [18]. Even for three colors this is a large
factor, 1/27.

In the usual QGP, hard photon production is propor-
tional to the thermal quark mass squared, m2

qk

⇠ g2T 2

[9, 10]. For hard photons, this generalizes to Qa 6= 0 to
leading logarithmic order: if (ma

qk

)2(Q) is the thermal
quark mass squared for color index a, the suppression
factor is just the ratio of the sum of the thermal quark
masses, f�(Q) = 1/Nc

P
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a
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)2(Q)/m2

qk

(0) [18].
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FIG. 2. Dilepton yield (a) and elliptic flow (b) computed
using music, from the semi-QGP and QGP, plus hadronic
matter (HM).

To give a qualitative estimate of the e↵ects upon ex-
periment, we multiply the full rate to ⇠ e2g2 [10] times
the suppression factor which we find to leading logarith-
mic order, f�(Q) in Eq. (7). We use music, a 3+1 D
hydrodynamic simulation [7, 8]. As the purpose of this
study is to determine the global e↵ect of rates in the semi-
QGP, versus that in the usual QGP, we also include the
hadronic rates for dileptons [13] and photons [15]. We use
ideal hydrodynamics for nucleus-nucleus collisions, with
A = 200 at RHIC energies,

p
s = 200 GeV/A.

In ideal hydrodynamics, fluid dynamics is governed by
the conservation equation for the stress-energy tensor,
@µTµ⌫ = 0, where Tµ⌫ = ("+P )uµu⌫�gµ⌫P ; " is the en-
ergy density, P the thermodynamic pressure and uµ the
fluid four-velocity. The details regarding the numerical
algorithm being used to solve the hydrodynamic equa-
tions along with the initial and freeze-out conditions are
presented in [7].
Figure (2) shows the results for the dileptons. There

are slightly more dileptons from the semi-QGP than the
usual QGP, but below 1.5GeV invariant mass, the total
yield is dominated by the hadronic matter. It might be
possible to detect dileptons from the semi-QGP above
1.5GeV. The dilepton elliptic flow is small, v

2

⇠ .01�.06,
and is dominated by that from hadronic matter.
The results for photons, shown in Fig. (3), are very dif-

ferent. The suppression of color in the semi-QGP greatly
reduces the photon yield, panel (a) of Fig. (3). The con-
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nated by 2 ! 2 processes. This is a straightforward gen-
eralization of the original computations of Ref. [9]. The
results for collinear emission at large Nc will be given
later [18].

Computing thermal photon production only to leading
logarithmic order, we find [18]
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In the perturbative limit, f�(0) = 1. This function de-
creases monotonically as Q increases, with f�(2⇡T/3) =
1/27 in the confined phase. In Fig. (1) we plot f� versus
temperature. This result is independent of momentum
when E � T .

Why photon production is strongly suppressed in the
confined phase can be understood from the case of pair
annihilation. Using kinetic theory in the Boltzmann ap-
proximation, photon production is proportional to

e2 g2
X

a,b
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)/T |Mab
� |2 , (8)

where E
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is the energy of the incoming quark with color
a, E
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the energy of the anti-quark with color b, and Mab
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a matrix element, which depends upon a and b. The
quark and anti-quark then scatter into a gluon, with color
indices (ab), and a photon. In the deconfined phase, the
rate is⇠ e2g2N2

c ; at largeNc, keeping g2Nc fixed this is⇠
e2Nc, like dilepton production in Eq. (4). In the confined
phase, however, to avoid suppression by powers of the
Polyakov loop the color charges of the quark and anti-
quark must match up, with a = b. This reduces the result
by one factor of 1/Nc. Further, the matrix element Mab

�
involves the quark-gluon vertex; when a = b, this gives
another factor of 1/Nc, for an overall factor of 1/N2

c . The
same counting in 1/Nc applies for Compton scattering.
In all, at large Nc the ratio of hard photon production
in the confined phase, to that in the deconfined phase, is
f� = 1/(3N2

c ) [18]. Even for three colors this is a large
factor, 1/27.

In the usual QGP, hard photon production is propor-
tional to the thermal quark mass squared, m2

qk

⇠ g2T 2

[9, 10]. For hard photons, this generalizes to Qa 6= 0 to
leading logarithmic order: if (ma

qk

)2(Q) is the thermal
quark mass squared for color index a, the suppression
factor is just the ratio of the sum of the thermal quark
masses, f�(Q) = 1/Nc
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FIG. 2. Dilepton yield (a) and elliptic flow (b) computed
using music, from the semi-QGP and QGP, plus hadronic
matter (HM).

To give a qualitative estimate of the e↵ects upon ex-
periment, we multiply the full rate to ⇠ e2g2 [10] times
the suppression factor which we find to leading logarith-
mic order, f�(Q) in Eq. (7). We use music, a 3+1 D
hydrodynamic simulation [7, 8]. As the purpose of this
study is to determine the global e↵ect of rates in the semi-
QGP, versus that in the usual QGP, we also include the
hadronic rates for dileptons [13] and photons [15]. We use
ideal hydrodynamics for nucleus-nucleus collisions, with
A = 200 at RHIC energies,

p
s = 200 GeV/A.

In ideal hydrodynamics, fluid dynamics is governed by
the conservation equation for the stress-energy tensor,
@µTµ⌫ = 0, where Tµ⌫ = ("+P )uµu⌫�gµ⌫P ; " is the en-
ergy density, P the thermodynamic pressure and uµ the
fluid four-velocity. The details regarding the numerical
algorithm being used to solve the hydrodynamic equa-
tions along with the initial and freeze-out conditions are
presented in [7].
Figure (2) shows the results for the dileptons. There

are slightly more dileptons from the semi-QGP than the
usual QGP, but below 1.5GeV invariant mass, the total
yield is dominated by the hadronic matter. It might be
possible to detect dileptons from the semi-QGP above
1.5GeV. The dilepton elliptic flow is small, v

2

⇠ .01�.06,
and is dominated by that from hadronic matter.
The results for photons, shown in Fig. (3), are very dif-

ferent. The suppression of color in the semi-QGP greatly
reduces the photon yield, panel (a) of Fig. (3). The con-
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nated by 2 ! 2 processes. This is a straightforward gen-
eralization of the original computations of Ref. [9]. The
results for collinear emission at large Nc will be given
later [18].

Computing thermal photon production only to leading
logarithmic order, we find [18]
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d3p
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Q 6=0

= f�(Q) E
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d3p
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At the same order, the result for 2 ! 2 scattering in the
perturbative regime [9] is
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where ↵s = g2/(4⇡), and

f�(Q) = 1� 4 q +
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q2 ; q =
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2⇡T
, 0 < q < 1. (7)

In the perturbative limit, f�(0) = 1. This function de-
creases monotonically as Q increases, with f�(2⇡T/3) =
1/27 in the confined phase. In Fig. (1) we plot f� versus
temperature. This result is independent of momentum
when E � T .

Why photon production is strongly suppressed in the
confined phase can be understood from the case of pair
annihilation. Using kinetic theory in the Boltzmann ap-
proximation, photon production is proportional to

e2 g2
X

a,b

e�(E1�iQa
)/T e�(E2+iQb

)/T |Mab
� |2 , (8)

where E
1

is the energy of the incoming quark with color
a, E

2

the energy of the anti-quark with color b, and Mab
�

a matrix element, which depends upon a and b. The
quark and anti-quark then scatter into a gluon, with color
indices (ab), and a photon. In the deconfined phase, the
rate is⇠ e2g2N2

c ; at largeNc, keeping g2Nc fixed this is⇠
e2Nc, like dilepton production in Eq. (4). In the confined
phase, however, to avoid suppression by powers of the
Polyakov loop the color charges of the quark and anti-
quark must match up, with a = b. This reduces the result
by one factor of 1/Nc. Further, the matrix element Mab

�
involves the quark-gluon vertex; when a = b, this gives
another factor of 1/Nc, for an overall factor of 1/N2

c . The
same counting in 1/Nc applies for Compton scattering.
In all, at large Nc the ratio of hard photon production
in the confined phase, to that in the deconfined phase, is
f� = 1/(3N2

c ) [18]. Even for three colors this is a large
factor, 1/27.

In the usual QGP, hard photon production is propor-
tional to the thermal quark mass squared, m2

qk

⇠ g2T 2

[9, 10]. For hard photons, this generalizes to Qa 6= 0 to
leading logarithmic order: if (ma

qk

)2(Q) is the thermal
quark mass squared for color index a, the suppression
factor is just the ratio of the sum of the thermal quark
masses, f�(Q) = 1/Nc
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FIG. 2. Dilepton yield (a) and elliptic flow (b) computed
using music, from the semi-QGP and QGP, plus hadronic
matter (HM).

To give a qualitative estimate of the e↵ects upon ex-
periment, we multiply the full rate to ⇠ e2g2 [10] times
the suppression factor which we find to leading logarith-
mic order, f�(Q) in Eq. (7). We use music, a 3+1 D
hydrodynamic simulation [7, 8]. As the purpose of this
study is to determine the global e↵ect of rates in the semi-
QGP, versus that in the usual QGP, we also include the
hadronic rates for dileptons [13] and photons [15]. We use
ideal hydrodynamics for nucleus-nucleus collisions, with
A = 200 at RHIC energies,

p
s = 200 GeV/A.

In ideal hydrodynamics, fluid dynamics is governed by
the conservation equation for the stress-energy tensor,
@µTµ⌫ = 0, where Tµ⌫ = ("+P )uµu⌫�gµ⌫P ; " is the en-
ergy density, P the thermodynamic pressure and uµ the
fluid four-velocity. The details regarding the numerical
algorithm being used to solve the hydrodynamic equa-
tions along with the initial and freeze-out conditions are
presented in [7].
Figure (2) shows the results for the dileptons. There

are slightly more dileptons from the semi-QGP than the
usual QGP, but below 1.5GeV invariant mass, the total
yield is dominated by the hadronic matter. It might be
possible to detect dileptons from the semi-QGP above
1.5GeV. The dilepton elliptic flow is small, v

2

⇠ .01�.06,
and is dominated by that from hadronic matter.
The results for photons, shown in Fig. (3), are very dif-

ferent. The suppression of color in the semi-QGP greatly
reduces the photon yield, panel (a) of Fig. (3). The con-
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nated by 2 ! 2 processes. This is a straightforward gen-
eralization of the original computations of Ref. [9]. The
results for collinear emission at large Nc will be given
later [18].

Computing thermal photon production only to leading
logarithmic order, we find [18]
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In the perturbative limit, f�(0) = 1. This function de-
creases monotonically as Q increases, with f�(2⇡T/3) =
1/27 in the confined phase. In Fig. (1) we plot f� versus
temperature. This result is independent of momentum
when E � T .

Why photon production is strongly suppressed in the
confined phase can be understood from the case of pair
annihilation. Using kinetic theory in the Boltzmann ap-
proximation, photon production is proportional to
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e�(E1�iQa
)/T e�(E2+iQb

)/T |Mab
� |2 , (8)

where E
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is the energy of the incoming quark with color
a, E
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the energy of the anti-quark with color b, and Mab
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a matrix element, which depends upon a and b. The
quark and anti-quark then scatter into a gluon, with color
indices (ab), and a photon. In the deconfined phase, the
rate is⇠ e2g2N2

c ; at largeNc, keeping g2Nc fixed this is⇠
e2Nc, like dilepton production in Eq. (4). In the confined
phase, however, to avoid suppression by powers of the
Polyakov loop the color charges of the quark and anti-
quark must match up, with a = b. This reduces the result
by one factor of 1/Nc. Further, the matrix element Mab

�
involves the quark-gluon vertex; when a = b, this gives
another factor of 1/Nc, for an overall factor of 1/N2

c . The
same counting in 1/Nc applies for Compton scattering.
In all, at large Nc the ratio of hard photon production
in the confined phase, to that in the deconfined phase, is
f� = 1/(3N2

c ) [18]. Even for three colors this is a large
factor, 1/27.

In the usual QGP, hard photon production is propor-
tional to the thermal quark mass squared, m2

qk

⇠ g2T 2

[9, 10]. For hard photons, this generalizes to Qa 6= 0 to
leading logarithmic order: if (ma
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)2(Q) is the thermal
quark mass squared for color index a, the suppression
factor is just the ratio of the sum of the thermal quark
masses, f�(Q) = 1/Nc

P
a(m

a
qk

)2(Q)/m2

qk

(0) [18].

0.4 0.6 0.8 1 1.2 1.4
M [GeV]

10
-5

10
-4

10
-3

10
-2

d
N

/d
M

d
y

 a
t 

y
=

0
 [

G
eV

-1
]

semi-QGP 
QGP
HM+semi-QGP
HM+QGP

(a)

0.4 0.6 0.8 1 1.2 1.4
M [GeV]

0

0.01

0.02

0.03

0.04

0.05

0.06

v
2

semi-QGPx10
QGPx10
HM+semi-QGP 
HM+QGP

(b)

FIG. 2. Dilepton yield (a) and elliptic flow (b) computed
using music, from the semi-QGP and QGP, plus hadronic
matter (HM).

To give a qualitative estimate of the e↵ects upon ex-
periment, we multiply the full rate to ⇠ e2g2 [10] times
the suppression factor which we find to leading logarith-
mic order, f�(Q) in Eq. (7). We use music, a 3+1 D
hydrodynamic simulation [7, 8]. As the purpose of this
study is to determine the global e↵ect of rates in the semi-
QGP, versus that in the usual QGP, we also include the
hadronic rates for dileptons [13] and photons [15]. We use
ideal hydrodynamics for nucleus-nucleus collisions, with
A = 200 at RHIC energies,

p
s = 200 GeV/A.

In ideal hydrodynamics, fluid dynamics is governed by
the conservation equation for the stress-energy tensor,
@µTµ⌫ = 0, where Tµ⌫ = ("+P )uµu⌫�gµ⌫P ; " is the en-
ergy density, P the thermodynamic pressure and uµ the
fluid four-velocity. The details regarding the numerical
algorithm being used to solve the hydrodynamic equa-
tions along with the initial and freeze-out conditions are
presented in [7].
Figure (2) shows the results for the dileptons. There

are slightly more dileptons from the semi-QGP than the
usual QGP, but below 1.5GeV invariant mass, the total
yield is dominated by the hadronic matter. It might be
possible to detect dileptons from the semi-QGP above
1.5GeV. The dilepton elliptic flow is small, v

2

⇠ .01�.06,
and is dominated by that from hadronic matter.
The results for photons, shown in Fig. (3), are very dif-

ferent. The suppression of color in the semi-QGP greatly
reduces the photon yield, panel (a) of Fig. (3). The con-
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Due to the Pauli blocking in final state, the phases 
do not cancel, and the process is suppressed!!
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When Qa=0, LPM diagram is as large as 2 to 2 one.
P. B. Arnold, G. D. Moore and L. G. Yaffe, JHEP 0111, 057 (2001).
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(        )
LPM contribution is suppressed
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LPM diagram is suppressed by 1/Nc.
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eE � 1
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E
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(a=b)
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FIG. 3. Photon yield (a) and elliptic flow (b) using music,
from the semi-QGP and QGP, plus hadronic matter (HM).

tribution of either the semi-QGP or the QGP to v
2

is

small, panel (b) of Fig. (3). However, the e↵ects on the
total v

2

can be large. This is simply because the total
v
2

is an average of the v
2

from each phase, divided by
the total number of photons. Our basic point is that for
momenta where the number of photons in the QGP is
comparable to that from hadronic matter, the relative
decrease in the number of photons in the semi-QGP has
a large e↵ect. The total v

2

for photons is then biased to
that from hadronic matter, and increases significantly.
Besides a possible understanding of the puzzle of the

elliptic flow of photons [16, 17], more generally our results
suggest that other phenomenon may change dramatically
near Tc. Most notably, in the semi-QGP there should
be a strong suppression of radiative energy loss for light
quarks as T ! Tc, similar to that observed for hard
photon production.

ACKNOWLEDGMENTS

C.G., S.J., J.-F.P. and G.V. are supported in part by
the Natural Sciences and Engineering Research Council
of Canada. Y.H. is partially supported by JSPS KAK-
ENHI Grants Numbers 24740184, and by the RIKEN
iTHES Project. S.L. is supported by the RIKEN Foreign
Postdoctoral Researchers Program. J.-F.P. and G. V. ac-
knowledge scholarships from Hydro- Quebec, FRQNT,
and from the Canadian Institute of Nuclear Physics.
R.D.P. is supported by the U.S. Department of Energy
under contract #DE-AC02-98CH10886. D. S. is sup-
ported by JSPS Strategic Young Researcher Overseas
Visits Program for Accelerating Brain Circulation (No.
R2411).

[1] N. Haque, A. Bandyopadhyay, J. O. Andersen, M. G.
Mustafa, M. Strickland, et al., (2014), arXiv:1402.6907
[hep-ph].

[2] P. Huovinen and P. Petreczky, Nucl.Phys. A837,
26 (2010), arXiv:0912.2541 [hep-ph]; A. Andronic,
P. Braun-Munzinger, J. Stachel, and M. Winn,
Phys.Lett. B718, 80 (2012), arXiv:1201.0693 [nucl-th].

[3] R. D. Pisarski, Phys.Rev. D74, 121703 (2006),
arXiv:hep-ph/0608242 [hep-ph]; Y. Hidaka and
R. D. Pisarski, Phys.Rev. D78, 071501 (2008),
arXiv:0803.0453 [hep-ph]; Phys.Rev. D80, 036004
(2009), arXiv:0906.1751 [hep-ph]; Phys.Rev. D80,
074504 (2009), arXiv:0907.4609 [hep-ph]; Phys.Rev.
D81, 076002 (2010), arXiv:0912.0940 [hep-ph]; A. Du-
mitru, Y. Guo, Y. Hidaka, C. P. Korthãls Altes,
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FIG. 3. Photon yield (a) and elliptic flow (b) using music,
from the semi-QGP and QGP, plus hadronic matter (HM).

tribution of either the semi-QGP or the QGP to v
2

is

small, panel (b) of Fig. (3). However, the e↵ects on the
total v

2

can be large. This is simply because the total
v
2

is an average of the v
2

from each phase, divided by
the total number of photons. Our basic point is that for
momenta where the number of photons in the QGP is
comparable to that from hadronic matter, the relative
decrease in the number of photons in the semi-QGP has
a large e↵ect. The total v

2

for photons is then biased to
that from hadronic matter, and increases significantly.
Besides a possible understanding of the puzzle of the

elliptic flow of photons [16, 17], more generally our results
suggest that other phenomenon may change dramatically
near Tc. Most notably, in the semi-QGP there should
be a strong suppression of radiative energy loss for light
quarks as T ! Tc, similar to that observed for hard
photon production.
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Summary
• We calculated the production rates of dilepton and real photon 

by using a model which takes into account the Polyakov loop 
effect in perturbative QCD calculation.


• We found that the photon production rate is suppressed while 
the dilepton production is enhanced in this model.


• We saw that the LPM effect is suppressed in large Nc compared 
with 2 to 2 scattering.


• We found that the Polyakov loop effect increases total v2, which 
suggests that considering this effect can be a possible 
solution of photon v2 problem.
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Future Work
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• Full leading-order calculation of photon production and v2. (2 to 2 
beyond leading-log, LPM effect)


• Improvement of hydro simulation. (prompt photon, viscosity 
effect…)


