Photon and Dilepton Production in Semi-QGP and its effect on elliptic flow

Daisuke Satow (RIKEN, Japan/BNL, USA)

Collaborators: Yoshimasa Hidaka (RIKEN, Japan) Shu Lin (RIKEN-BNL, USA) Robert Pisarski (BNL, USA)

Outline

- Introduction: Electromagnetic Probe, Semi-QGP
- Dilepton Production
- Photon Production
- •Effect on Photon v₂

Electromagnetic Probe

Electromagnetic probe (lepton, photon) is phenomenologically important because

- Once generated, it goes out without interacting with medium.
- It reflects the microscopic properties of medium like quark spectrum.
- It also reflects the macroscopic properties like elliptic flow.

Electromagnetic Probe

Photon v_2 **puzzle**: theory prediction of v_2 is much smaller than experimental data

Electromagnetic Probe

One possible solution: considering (partial) confinement effect

Effect of confinement

In QGP, Polyakov loop is used as (quasi) order parameter of deconfinement transition.

$$l \equiv \frac{1}{N_c} \operatorname{Tr} \left\langle \mathcal{P} \exp\left(\int_0^\beta d\tau g A^0(\tau, \vec{x})\right) \right\rangle$$

Semi-QGP

0 < l < 1 even around ~ $2T_c$.

Lattice QCD: A. Bazavov et al., PRD **80**, 014504 (2009)

It is necessary to consider effect of nontrivial *l* even in QGP phase. (Semi-QGP) Simple model to analyze effect of Polyakov loop in perturbative computation:

QCD Lagrangian + background gluon

(quark ψ , gluon fluctuation *a*)

$$\mathcal{L}[a,\psi,\bar{\psi}] = i \sum_{j=1}^{N_f} \bar{\psi}_j \mathcal{D}[a] \psi_j - \frac{1}{4} F^{\mu\nu a}[a] F^a_{\mu\nu}[a]$$
$$a_0 \longrightarrow A_0 + a_0$$

$$(A_0)^{ab} = \frac{\delta^{ab}Q^a}{g} = (Q, -Q, 0)/g$$

cf: PNJL model: integrate out gluon

K. Fukushima, Phys. Lett. B **591**, 277 (2004)

 (A_0)

Semi-QGP

E. Gava and R. Jengo, Phys. Lett. B **105**, 285 (1981)
Y. Burnier, M. Laine and M. Vepsalainen, JHEP **1001**, 054 (2010)
N. Brambilla, J. Ghiglieri, P. Petreczky and A. Vairo, Phys. Rev. D **82**, 074019 (2010).

After removing perturbative correction to *l*, background gluon is obtained from *l* obtained from lattice calculation.

 $l(Q = 0) = 1 + \delta l(Q = 0) \qquad \delta l(Q = 0) = \frac{g^2 C_f m_D}{8\pi T} \qquad \left(\begin{array}{c} g: \text{ running coupling at one-loop} \\ m_D: \text{ Debye mass of gluon} \\ at one-loop \end{array}\right)$

Fourier transformation

$$\overline{\psi}\gamma^0(\partial_0 + igA_0)\psi$$

$$-\overline{\psi}_a \gamma^0 (E - iQ_a) \psi_a$$

imaginary chemical potential coupled with color charge

quark distribution:

$$\frac{1}{e^{\beta(E-iQ_a)}+1}$$

gluon distribution:

$$\frac{1}{e^{\beta(E-iQ_a+iQ_b)}-1}$$

Statistical Confinement

T is scaled by *N_c* in confined phase. (Distribution is suppressed: statistical confinement)

Dilepton Production

$2 \rightleftharpoons 2$ scattering (pair annihilation)

Dilepton Production — Result

Not suppressed, even slightly enhanced!

(Naively, confinement reduces chance of $2 \rightleftharpoons 2$ scattering, thus suppresses

dilepton production)

Physical Interpretation of Dilepton Enhancement

The phases cancels, NO suppression due to Polyakov loop!!

Photon Production

2 ≈ 2 scattering

(pair annihilation)

(Compton scattering)

Photon Production

Photon Production—Result

Suppressed.

Interpretation of Photon Production Suppression

Due to the Pauli blocking in final state, the phases do not cancel, and the process is suppressed!!

LPM contribution P. B. Arnold, G. D. Moore and L. G. Yaffe, JHEP 0111, 057 (2001).

When $Q_a=0$, LPM diagram is as large as 2 to 2 one.

LPM contribution is suppressed

LPM diagram is suppressed by $1/N_c$.

Collaboration with C. Gale, S. Jeon, J-F. Paquet, V. Skokov, G. Vujanovic

Effect on Elliptic Flow (v_2)

Calculation with Hydrodynamics (MUSIC):

Collaboration with C. Gale, S. Jeon, J-F. Paquet, V. Skokov, G. Vujanovic

Effect on Elliptic Flow (v_2)

Since hadron photon has large v₂, reducing QGP photon makes total v₂ larger.

Collaboration with C. Gale, S. Jeon, J-F. Paquet, V. Skokov, G. Vujanovic

Effect on Elliptic Flow (v_2)

Since hadron photon has large v₂, reducing QGP photon makes total v₂ larger.

Summary

- We calculated <u>the production rates of dilepton and real photon</u> by using a model which takes into account <u>the Polyakov loop</u> <u>effect</u> in perturbative QCD calculation.
- We found that the photon production rate is suppressed while the dilepton production is enhanced in this model.
- We saw that the LPM effect is suppressed in large N_c compared with 2 to 2 scattering.
- We found that the <u>Polyakov loop effect increases total v₂</u>, which suggests that <u>considering this effect can be a possible</u> <u>solution of photon v₂ problem</u>.

Future Work

- Full leading-order calculation of photon production and v₂. (2 to 2 beyond leading-log, LPM effect)
- Improvement of hydro simulation. (prompt photon, viscosity effect...)