
Polyakov-loop potential from a massive
extension of the background field gauge

Urko Reinosa∗

(Work in collaboration with J. Serreau, M. Tissier, N. Wschebor)

∗Centre de Physique Théorique, Ecole Polytechnique, CNRS, Palaiseau, France

SEWM, Lausanne, July 2014



Motivation

Motivation



Motivation

Semi-analytical approaches to strongly interacting matter

Need for semi-analytical methods
to investigate infrared properties
of QCD or related theories.

These approaches (SD-eq, fRG, . . . ) usually require gauge fixing:

Ex: Landau gauge action

S = ∫
x
{

1
4

F a
µνF a

µν + ∂µc̄a(Dµc)a + iha∂µAa
µ}

Valid only in the UV where the Gribov ambiguity
is expected not to play a role.
⇒ Some additional imput is needed in the IR. 0 1 2 3
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Motivation

Extended Landau gauge (eLG)

Alternative approach: find phenomenologically (and hopefully theoretically) motivated
actions that could take into account the existence of Gribov copies.

A candidate for such an action is the extended Landau gauge (eLG) action

S = ∫
x
{

1
4

F a
µνF a

µν + ∂µc̄a(Dµc)a + iha∂µAa
µ +

1
2

m2Aa
µAa

µ}
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Extended Landau gauge (eLG)

Alternative approach: find phenomenologically (and hopefully theoretically) motivated
actions that could take into account the existence of Gribov copies.

A candidate for such an action is the extended Landau gauge (eLG) action

S = ∫
x
{

1
4

F a
µνF a

µν + ∂µc̄a(Dµc)a + iha∂µAa
µ +

1
2

m2Aa
µAa

µ}

● It is perturbatively renormalizable.

● A perturbative, calculation of the T = 0 propagators and vertices reproduces lattice data!
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Tissier, Wschebor, Phys.Rev. D84 (2011);

Peláez, Tissier, Wschebor, Phys.Rev. D88 (2013) and arXiv:1407.2005.

● It could result from a gauge fixing procedure which averages over Gribov copies.
(Serreau, Tissier, Phys.Lett. B712 (2012); Serreau, Tissier, Tresmontant, arXiv:1307.6019).



Motivation

Extended Landau gauge (eLG)

Alternative approach: find phenomenologically (and hopefully theoretically) motivated
actions that could take into account the existence of Gribov copies.

A candidate for such an action is the extended Landau gauge (eLG) action

S = ∫
x
{

1
4

F a
µνF a

µν + ∂µc̄a(Dµc)a + iha∂µAa
µ +

1
2

m2Aa
µAa

µ}

● It is perturbatively renormalizable. Extra parameter: for SU(3), m ≈ 510 MeV.

● A perturbative, calculation of the T = 0 propagators and vertices reproduces lattice data!
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Peláez, Tissier, Wschebor, Phys.Rev. D88 (2013) and arXiv:1407.2005.

● It could result from a gauge fixing procedure which averages over Gribov copies.
(Serreau, Tissier, Phys.Lett. B712 (2012); Serreau, Tissier, Tresmontant, arXiv:1307.6019).



Motivation

Tests at finite temperature

One loop, finite T , eLG ghost and chromo-magnetic propagators agree well with lattice results:
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Motivation

Tests at finite temperature

One loop, finite T , eLG ghost and chromo-magnetic propagators agree well with lattice results:
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The eLG fails in reproducing the lattice chromo-electric propagator in the vicinity of the
confinement/deconfinement phase transition:

● could signal a failure of the eLG model
→ but similar limitations are observed in other approaches.

● could signal limitations of the use of the LG

→ explore “more appropriate” gauges and test whether the corresponding
(IR) extended gauge models are capable to describe the phase transition.



Motivation

Polyakov loop and center-symmetry breaking

Free-energy F for having an isolated static quark located somewhere

e−βF =
1
N

⟨tr P eig ∫
β

0 dτA0(τ)⟩ ≡ ⟨L⟩ with A0 = Aa
0ta (a = 1, . . . ,N)

The Yang-Mills action at finite T is invariant under twisted or center (gauge) transformations

U(β, x⃗) = U(0, x⃗)V with V ∈ SU(N)center = {ei2πk/N1∣k = 0, . . . ,N − 1}

Under a center transformation ⟨L⟩→ ⟨L⟩ei2πk/N :

● if center-symmetry is broken ⟨L⟩ ≠ 0 and F <∞ (deconfined phase);

● if center-symmetry is restored ⟨L⟩ = 0 and F =∞ (confined phase);



Motivation

Polyakov loop and center-symmetry breaking

Free-energy F for having an isolated static quark located somewhere

e−βF =
1
N

⟨tr P eig ∫
β

0 dτA0(τ)⟩ ≡ ⟨L⟩ with A0 = Aa
0ta (a = 1, . . . ,N)

The Yang-Mills action at finite T is invariant under twisted or center (gauge) transformations

U(β, x⃗) = U(0, x⃗)V with V ∈ SU(N)center = {ei2πk/N1∣k = 0, . . . ,N − 1}

The lattice predicts a 2nd/1st order breaking of center-symmetry in the SU(2)/SU(3) case.
Confirmed by the functional renormalization group:
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Motivation

Polyakov loop and center-symmetry breaking

Free-energy F for having an isolated static quark located somewhere

e−βF =
1
N

⟨tr P eig ∫
β

0 dτA0(τ)⟩ ≡ ⟨L⟩ with A0 = Aa
0ta (a = 1, . . . ,N)

The Yang-Mills action at finite T is invariant under twisted or center (gauge) transformations

U(β, x⃗) = U(0, x⃗)V with V ∈ SU(N)center = {ei2πk/N1∣k = 0, . . . ,N − 1}

The lattice predicts a 2nd/1st order breaking of center-symmetry in the SU(2)/SU(3) case.
Confirmed by the functional renormalization group:

Can this physics be captured perturbatively?
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Extended background field gauge

The extended background field gauge

Choose a background Āa
µ. Fix the gauge according to (D̄µ(Aµ − Āµ))a = 0.

In the limit ξ → 0, one obtains the Landau-deWitt gauge:

SĀ[A] = ∫
x
{

1
4

F a
µνF a

µν + (D̄µc̄)a(Dµc)a + iha(D̄µ(Aµ − Āµ))a}

Why to consider such a gauge? From SĀ[A], it is possible to construct Γ̃[Ā] such that

● the physics is obtained at the absolute minimum of Γ̃[Ā];
● center-symmetry is manifest because Γ̃[ĀU] = Γ̃[Ā].



Extended background field gauge

The extended background field gauge

Choose a background Āa
µ. Fix the gauge according to (D̄µ(Aµ − Āµ))a = 0.

In the limit ξ → 0, one obtains the Landau-deWitt gauge:

SĀ[A] = ∫
x
{

1
4

F a
µνF a

µν + (D̄µc̄)a(Dµc)a + iha(D̄µ(Aµ − Āµ))a}

Why to consider such a gauge? From SĀ[A], it is possible to construct Γ̃[Ā] such that

● the physics is obtained at the absolute minimum of Γ̃[Ā];
● center-symmetry is manifest because Γ̃[ĀU] = Γ̃[Ā].

We upgrade the bakground field gauge to the extended background field gauge (eBFG):

SĀ[A] = ∫
x
{

1
4

F a
µνF a

µν + (D̄µc̄)a(Dµc)a + iha(D̄µ(Aµ − Āµ))a +
1
2

m2(Aa
µ − Āa

µ)(Aa
µ − Āa

µ)}

The mass term does not break center symmetry!

Feynman rules?



Extended background field gauge

Feynman rules: simplifying remarks

We are interested in thermodynamical properties:
⇒ uniform background: Āa

µ(τ, x⃗) = Āa
µ.

⇒ effective potential: γ(Ā) = Γ̃[Ā]/(βV).

We are interested in the Polyakov loop:
⇒ temporal background Āa

µ = Āa
0δµ0.

One can always choose Ā0 in the Cartan sub-algebra:

⇒ SU(2): Ā0 = Ā3
0
σ3

2

⇒ SU(3): Ā0 = Ā3
0
λ3

2 + Ā8
0
λ8

2
. . .

The only role of the background is to lift the usual degeneracy between the three color directions.



Extended background field gauge

Feynman rules: modes

Ex.: SU(2) ghost propagator:

eLG:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

G11(K) = 1
K 2

G22(K) = G11(K)

G33(K) = G11(K)

→ eBFG:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0(K) = 1
K 2

G+(K) = 1
K 2
+

G−(K) = 1
K 2
−

Kσ = (ωn + σgĀ3
0, k⃗)

SU(2) gluon propagator:

eLG:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G11
µν(K) =

P⊥µν(K)

K 2+m2 + ξP∥µν(K)
K 2+ξm2

G22
µν(K) = G11

µν(K)

G33
µν(K) = G11

µν(K)

→ eBFG:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0
µν(K) =

P⊥µν(K)

K 2+m2 + ξP∥µν(K)
K 2+ξm2

G+

µν(K) =
P⊥µν(K+)

K 2
++m2 + ξP∥µν(K+)

K 2
++ξm2

G−

µν(K) =
P⊥µν(K−)

K 2
−+m2 + ξP∥µν(K−)

K 2
−+ξm2



Extended background field gauge

Feynman rules: modes

Ex.: SU(2) ghost propagator:

eLG:
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G0(K) = 1
K 2

G+(K) = 1
K 2
+

G−(K) = 1
K 2
−

Kσ = (ωn + σgĀ3
0, k⃗)

SU(2) gluon propagator:

eLG:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G11
µν(K) =

P⊥µν(K)

K 2+m2 + ξP∥µν(K)
K 2+ξm2

G22
µν(K) = G11

µν(K)

G33
µν(K) = G11

µν(K)

→ eBFG:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0
µν(K) =

P⊥µν(K)

K 2+m2 + ξP∥µν(K)
K 2+ξm2

G+

µν(K) =
P⊥µν(K+)

K 2
++m2 + ξP∥µν(K+)

K 2
++ξm2

G−

µν(K) =
P⊥µν(K−)

K 2
−+m2 + ξP∥µν(K−)

K 2
−+ξm2

For each charge eigenstate, we have:

3 massive transverse gluons, 1 massless longitudinal gluon (ξ → 0), 2 massless ghosts.
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Polyakov-loop potential
and center-symmetry breaking



Polyakov-loop potential and center-symmetry breaking

Background as an order parameter

� To discuss center-symmetry breaking from γ(Ā), it is first necessary to identify Ā
as an order parameter for center-symmetry breaking.

At LO, the path ordering in ⟨L⟩ does not play a role

⟨L⟩ =
1
N

⟨tr P e−ig ∫
β

0 dτ (Ā0+a0(τ))⟩ =
1
N

tr e−iβgĀ0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡⟨L⟩lo

+O(g2)

SU(2): Ā0 = Ā3
0
σ3

2

⟨L⟩lo = cos
⎛
⎝
βgĀ3

0

2
⎞
⎠
⇒ ⟨L⟩lo = 0 iff r3 ≡ βgĀ3

0 = π [2π]

The background plays the role of an order parameter for center-symmetry breaking!



Polyakov-loop potential and center-symmetry breaking

LO Polyakov-loop potential: SU(2) case

Only the charged modes contribute to the background dependence of the potential

γ(Ā3
0) = 3T ∫

q
ln (1 + e−2βεq − 2e−βεq cos(βgĀ3

0
²
≡r3

)) − T ∫
q

ln (1 + e−2βq − e−βq cos(βgĀ3
0))



Polyakov-loop potential and center-symmetry breaking

LO Polyakov-loop potential: SU(2) case

Only the charged modes contribute to the background dependence of the potential

γ(Ā3
0) = 3T ∫

q
ln (1 + e−2βεq − 2e−βεq cos(βgĀ3

0
²
≡r3

)) − T ∫
q

ln (1 + e−2βq − e−βq cos(βgĀ3
0))

Symmetries:

Center symmetry: γ(r3) = γ(r3 + 2π)
⇒ we can restrict to [0,2π]

Center + C-symmetry:
γ(π + δr3) = γ(−π − δr3) = γ(π − δr3)

⇒ { we can restrict to r3 ∈ [0, π]
0 and π are extrema

0 Π 2 Π

0



Polyakov-loop potential and center-symmetry breaking

LO Polyakov-loop potential: SU(2) case

Only the charged modes contribute to the background dependence of the potential

γ(Ā3
0) = 3T ∫

q
ln (1 + e−2βεq − 2e−βεq cos(βgĀ3

0
²
≡r3

)) − T ∫
q

ln (1 + e−2βq − e−βq cos(βgĀ3
0))

Thermal asymptotic behavior:

T ≫ m, 2T ∫q ln(1 + e−2βq − e−βq cos(r3))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡γWeiss(r3)

T ≪ m, −T ∫q ln(1 + e−2βq − e−βq cos(r3))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=−
1
2 γWeiss(r3)

γWeiss(r3) =
(r3 − π)4

24π2
−

(r3 − π)2

12
+

7π2

360

0 Π 2 Π

0



Polyakov-loop potential and center-symmetry breaking

LO Polyakov-loop potential: SU(2) case

Only the charged modes contribute to the background dependence of the potential

γ(Ā3
0) = 3T ∫

q
ln (1 + e−2βεq − 2e−βεq cos(βgĀ3

0
²
≡r3

)) − T ∫
q

ln (1 + e−2βq − e−βq cos(βgĀ3
0))

Thermal asymptotic behavior:

T ≫ m, 2T ∫q ln(1 + e−2βq − e−βq cos(r3))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡γWeiss(r3)

T ≪ m, −T ∫q ln(1 + e−2βq − e−βq cos(r3))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=−
1
2 γWeiss(r3)

γWeiss(r3) =
(r3 − π)4

24π2
−

(r3 − π)2

12
+

7π2

360

0 Π 2 Π

0

reverted Weiss potential!
(ghost dominate at low T ;

as in the fRG approach)



Polyakov-loop potential and center-symmetry breaking

LO Polyakov-loop potential: SU(2) case

Only the charged modes contribute to the background dependence of the potential

γ(Ā3
0) = 3T ∫

q
ln (1 + e−2βεq − 2e−βεq cos(βgĀ3

0
²
≡r3

)) − T ∫
q

ln (1 + e−2βq − e−βq cos(βgĀ3
0))

Thermal asymptotic behavior:

T ≫ m, 2T ∫q ln(1 + e−2βq − e−βq cos(r3))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡γWeiss(r3)

T ≪ m, −T ∫q ln(1 + e−2βq − e−βq cos(r3))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=−
1
2 γWeiss(r3)

γWeiss(r3) =
(r3 − π)4

24π2
−

(r3 − π)2

12
+

7π2

360

0 Π 2 Π

0

2nd order phase transition!



Polyakov-loop potential and center-symmetry breaking

LO Polyakov-loop potential: SU(3) case

We obtain a mildly first order phase transition in agreement with lattice or fRG results.

0 2 Π

3

4 Π

3

2 Π

0

We obtain Tc/m ≃ 0.363 and since m ≃ 510 MeV, we obtain Tc ≃ 185 MeV.

Still far from the lattice (Tc ≃ 295 MeV) or from fRG results (Tc ≃ 284 MeV).



Polyakov-loop potential and center-symmetry breaking

LO artifacts

The Polyakov loop reaches its limiting value at a finite temperature Ta/Tc = 1.5:

1 1.5
0

1

T�Tc

<L>

1.4 1.5 1.58

1

T�Tc

<L>

Similar conclusion for SU(3) again with Ta/Tc = 1.38:

1 1.38
0

1

T�Tc

<L>

1.3 1.38 1.46

1

T�Tc

<L>

Additional singularity in thermodynamical observables in the range [Tc,2Tc].



Next-to-leading order results

Next-to-leading order results



Next-to-leading order results

NLO Polyakov-loop potential

γnlo(Ā) = − − − −

− − −

(with background-dependent propagators and background-dependent derivative vertices)
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Summary of NLO results

→ At NLO, Ā plays the role of an order parameter. We find ⟨L⟩nlo = (1 + ag2βm) × ⟨L⟩lo with

a =
3

32π
+ sin2 (

r3

2
)∫

d3q
(2πm)3

⎡⎢⎢⎢⎢⎣

1
cosh(βq) − cos(r3)

−
q2

ε2
q

1
cosh(βεq) − cos(r3)

⎤⎥⎥⎥⎥⎦
Since a > 0, it follows that ⟨L⟩nlo = 0 iff ⟨L⟩lo = 0 iff r3 = π [2π].

→ The NLO Polyakov loop potential is UV finite.

→ Our “predictions” concerning the orders of the SU(2)/SU(3) transitions remain the same.

→We obtain improved values for Tc in the SU(3) case:

order LO NLO FRG∗ Lattice∗∗

SU(3) 1st 185 MeV 256 MeV (prelim.) 284 MeV 295 MeV
∗ Braun et. al, Phys.Lett. B684 (2010) ∗∗ Aouane et. al, Phys.Rev. D85 (2012).

→ The LO artifact seems to be lifted or at least pushed to temperatures above 3Tc:

we do not find additional thermodynamical singularities in the range [Tc,3Tc].
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Conclusions and Outlook

● A perturbative one-loop calculation of the Polyakov-loop potential within
the extended BFG allows to capture the physics of center-symmetry breaking.

● Our approach allows for a systematic determination of higher order corrections.

● Two-loop corrections are important to reach a value of the transition temperature
comparable to that obtained on the lattice or with an fRG approach and to get rid
of certain artifacts of the one-loop calculation.

* * * * *

● eBFG propagators (in progress).

● Include quarks and chemical
potential (in progress).

● ...

● Solid theoretical justification of
extended massive gauges?

● Thermodynamics: meaningful
(monotonically increasing) pressure?

1 1.3

0

T�Tc

p
NLO eBFG SUH2L

LO eBFG SUH2L

LO eLG SUH2L
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(more) Propaganda

And please, visit the posters by:

● Marcela Peláez;
● Gergely Markó;
● Andréas Tresmontant.
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eLG from the perspective of the eBFG

The loop expansion in the eLG looks like an expansion around an instable point.

0 Π 2 Π

0

p = −γ(rmin)

eLG: r3 = 0 (max)

eBFG: r3 = π (min)

eLG for T ≪ m:

p = T 4 ∫
q

ln (1 − e−q) + T 4 ∫
q

ln (1 + e−2q − 2e−q cos(r3)) = 3T 4 ∫
q

ln (1 − e−q) < 0

eBFG for T ≪ m:

p = T 4 ∫
q

ln (1 − e−q) + T 4 ∫
q

ln (1+e−q)
2
= −

3
4

T 4 ∫
q

ln (1 − e−q) > 0

Effective change of nature of the degrees of freedom in the presence of the background!
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LO Polyakov-loop potential: SU(3) case

Each charged mode contributes as in the SU(2) case but with its own Q3 and Q8 charges:

γsu(3)(r3, r8) = γsu(2)(r3) + γsu(2) (
r3 + r8

√
3

2
) + γsu(2) (

−r3 + r8
√

3
2

)
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