Dynamics of Peccei-Quinn Scalar Revisited

Kyohei Mukaida (Univ. of Tokyo)

Based on 14xx.yyyy with T. Moroi, K. Nakayama, M. Takimoto

Kyohei Mukaida - Univ. of Tokyo

Strong CP problem

•QCD θ -term violates CP: $\mathscr{L}_{\theta} = \theta \frac{\alpha_s}{8\pi} F^{a\mu\nu} \tilde{F}^a_{\mu\nu}$

Tightly constrained by neutron Electric Dipole Moment: $|\theta| \lesssim 10^{-10}$

Why is it so small??

Peccei-Quinn (PQ) Mechanism [Peccei, Quinn, '77; Weinberg, '78; Wilczek, '78]

- Introduce $U(1)_{PQ}$ so that $U(1)_{PQ}$ -SU(3)_C-SU(3)_C becomes anomalous.
- Spontaneous breaking of U(1)_{PQ} at a scale $f_a = \sqrt{2} \langle |\Phi| \rangle$. [Φ : PQ-Scalar]
- ♦ θ becomes dynamical as a Pseudo NG-boson: "Axion". \Rightarrow θ = 0 at Vacuum.

Cold Dark Matter (CDM) candidate

Axion Cold Dark Matter (3 contributions)

Axion v.s. High Scale Inflation

♦ If **J**(f)_{PQ} during the inflation,

Axion v.s. High Scale Inflation

◆ If **J**(**t**)_{PQ} during the inflation, the axion acquires **quantum fluctuations**.

Axion v.s. High Scale Inflation

◆ If **J**(f)_{PQ} during the inflation, the axion acquires **quantum fluctuations**.

$$V(|\Phi|) \longrightarrow V(|\Phi|) \longrightarrow V(|\Phi|) \longrightarrow V(|\Phi|) = \frac{H_{inf}}{2\pi\varphi_{inf}}; \quad \varphi_{inf} \equiv \sqrt{2} \langle |\Phi| \rangle_{inf}$$

$$\Rightarrow CDM \text{ density: } r \equiv \frac{\Omega_a}{\Omega_c} \simeq 1.5 \left(\frac{\theta_i^2}{\theta_i^2} + \frac{\delta\theta^2}{\theta_i^2} \right) \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{1.19} \left(\frac{\Lambda}{400 \text{ MeV}} \right)$$

$$\Rightarrow Axion \text{ Isocuvature: tightly constrained by CMB observation. [Planck, '13]}$$

$$\Re_{S_{CDM}} = 4r^2 \frac{\delta\theta^2}{\theta_i^2 + \delta\theta^2} \lesssim 10^{-10} \qquad [Linde, Lyth, '90]$$

This constraint can be avoided if U(1)_{PQ} is restored during (after) inflation.

Outline

Introduction

Thermal History Dynamics of PQ Scalar Conclusion

Rough Sketch of Thermal History

Let us consider a simple hadronic axion model

$$\mathscr{L} = |\partial \Phi|^2 - (\lambda \Phi Q \bar{Q} + \text{h.c.}) - \frac{m_{\phi}^2}{2f_a^2} \left(|\Phi|^2 - \frac{f_a^2}{2} \right)^2; \ \Phi = \frac{1}{\sqrt{2}} \left(f_a + \varphi \right) e^{ia/f_a}$$

Charge assignment:

	Φ	Q	Q
U(1) _{PQ}	+1	-1	0
SU(3) _C	1	3	3

Thermal Dissipation of PQ scalar

← For $m_{\Phi} > g^2T$, the cut contribution becomes important. HTL results for $m_{\Phi} > gT$ are given in [Graf, Steffen, '11,'13]. Kyohei Mukaida - Univ. of Tokyo

- Contour plot of $\Delta N_{eff} = 1$ as a function of m_{Φ} and f_a .
- •Axion Dark Radiation: $\Delta N_{\rm eff} \equiv N_{\rm eff} N_{\rm eff}^{\rm (std)}$.

- Contour plot of $\Delta N_{eff} = 1$ as a function of m_{Φ} and f_a .
- •Axion Dark Radiation: $\Delta N_{\rm eff} \equiv N_{\rm eff} N_{\rm eff}^{\rm (std)}$.

- Contour plot of $\Delta N_{eff} = 1$ as a function of m_{Φ} and f_a .
- •Axion Dark Radiation: $\Delta N_{\rm eff} \equiv N_{\rm eff} N_{\rm eff}^{\rm (std)}$.

Kyohei Mukaida - Univ. of Tokyo

Conclusion

Conclusion

- We have revisited the dynamics of PQ scalar after the PQ phase transition for m_Φ < f_a, paying attention to the axion dark radiation constraint.
- It is shown that interactions with thermal plasma play crucial roles in reducing the axion dark radiation.
 - Typical example of $m_{\Phi} < f_a \rightarrow$ SUSY axion model. In this case, we have to avoid the **axino overproduction** simultaneously.
 - Strongly model dependent (e.g., R_p-violation, mass spectrum, dilution by another PQ scalar etc)

Back Up

Bulk Viscosity

• The **dissipation rate of** $\boldsymbol{\phi}$ is related with the **bulk viscosity**.

[Bodeker, '06; Laine, '10]

 \blacklozenge Dissipation rate of ϕ is given by

 $\Rightarrow \text{Dissipation rate of } \boldsymbol{\varphi} \text{ can be expressed as}$ $\Gamma^{(\text{dis})} \simeq \frac{C^2 \alpha_s^2}{f_s^2} \frac{4 \times 9\zeta}{B^2} \simeq \frac{(12\pi C)^2 \alpha_s^2 T^3}{\ln(\alpha_s^{-1})}.$

One-Loop Estimation

Though one needs to resum many diagrams to obtain complete LO results, one may estimate its order by one-loop computations.

Bulk Viscosity:

★Axion Dissipation: ★ Regulated by the width, Γ_p ~ g_s⁴T³/p², which comes from thermal interactions. **FF FF FF P**_{FF}(ω,k) **Q**_{ω=k≪Γ} ~ $\frac{a_s^2 T^3}{f_a^2} \int \frac{T \Gamma_p}{\omega^2 + \Gamma_p^2} \frac{p^2 dp}{T E_p^2} \frac{1}{T^2} \left[p^2 + \frac{1}{3} E_p^2 \right]$