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ABSTRACT AND MOTIVATION

We present accurate FFT based numerical investigations done in Eu-
clidean space using the 2-loop level truncation of the 2PI effective po-
tential. The theoretical and numerical tools needed for a phenomeno-
logical application of the Phi-derivable method beyond the leading
Hartree-Fock approximation were developed in [Markó et al., PRD 86
085031 (2012)]. Our primary interest here is to study the thermodynam-
ics of the chiral phase transition and the bounds triviality poses on the
predictive power of the model [Markó et al., PRD 87 105001 (2013)].

We also investigate the relation between spontaneous symmetry break-
ing and the forming of a Bose-Einstein condensate within the charged
scalar model at finite chemical potential, where we discuss the silver
blaze phenomenon [Markó et al., in preparation].

Due to the presence of the Landau pole (Λp), an important ques-
tion when dealing with effective scalar models is whether a physical
parametrization is possible, as in order to retain the predictability of the
model, one has to keep the physical scales well below the scale of the

Landau pole. We show that a reasonable parametrization of the O(4)
model at vanishing isospin chemical potential is possible using the pion
and sigma curvature masses and the pion decay constant.

As a first, however simple, application at finite chemical potential we
study the charged scalar model, in order to learn how to cope with some
problems specific in a 2PI setting. Later we aim to extend our investiga-
tions to assess the role of pion condensation similarly as in [Andersen,
PRD 75 065011 (2007)].

THE 2PI EFFECTIVE POTENTIAL

The 2-loop truncated 2PI effective potential reads, at non-vanishing chemical potential (µ), explicit symmetry breaking source term h and flavor number N with the propagator matrices G =
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RENORMALIZATION

• Bare couplings are fixed by imposing conditions
on n-point functions at T = T? and µ = φ̄ = 0.

• Ambiguity in the definition of n-point functions
(e.g. M̄2 and M̂2) is a truncation artefact. Con-
vergence to the right theory, where no ambiguity
is present, is ensured, by imposing consistency
conditions, that lift the ambiguities at the renor-
malization point.

• 3 renormalization + 6 consistency conditions fix 9
counterterms as a function of only 2 renormalized
parameters (m2

?, λ?) and a renormalization scale
(T?).

• The bare couplings diverge positively at the cutoff
value Λp ∼ m? ec/λ? , which is the Landau pole.
For Λ > Λp the bare couplings turn negative and
the theory loses its meaning due to the loss of sta-
bility.

PARAMETER SPACE IN THE O(2)µ CASE
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Top left: The existence of critical temperature(s) at
µ = 0 decides whether spontaneous symmetry break-
ing or Bose-Einstein condensation occurs.
Bottom both: Iso-density lines on the T − µ plane,
with ρ increasing from left to right.
Bottom left: In the SSB case Tc(µ = 0) > 0 there-
fore the ρ = 0 line is such that φ̄(T < Tc) > 0.
Bottom right: In the BEC case Tc(µ = 0) < 0,
however there exists µc such that Tc(µc) = 0 and
Tc(µ > µc) > 0. Here the ρ = 0 iso-density line is
extended on the T = 0 axis up to µ = µc.
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TEMPERATURE EVOLUTION

• High temperature - symmetry restoration: φ̄ = 0,
M̄2
L = M̄2

T = M̄2
φ=0, while M̄2

A = 0 and
M̂2
L = M̂2

T = M̂2
φ=0.

• Critical temperature(s): M̂2
φ=0(Tc) = 0 and

M̄2
φ=0(T̄c) = 0, with T̄c < Tc. Monitoring the

potential shows that a 2nd order PT occurs at Tc.

• Low temperature - broken phase: φ̄ 6= 0. Gold-
stone theorem is fulfilled by the curvature masses,
but not by the gap masses⇒ curvature masses are
used for parametrization in the O(4) case.

• Coupled field and gap equations are solved itera-
tively.

• 3d rotation invariance⇒ 2d p-ω grid to store the
propagators GL,T and GA/ω.

• Convolutions appearing in the bubble type dia-
grams, are computed using FFT.

PARAMETER SPACE IN THE O(4) CASE
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The parameter space (m2
?, λ?, h) is scanned, M̂L ≡ mσ , M̂T ≡ mπ and Tpc (pseudocritical tempera-

ture) are measured in units of T? and T?[MeV] is determined from φ̄(m2
?/T

2
? , λ?, h/T

3
? , T? = 1)

!
= fπ/T?.

Those points are retained in the parameter space, where mπ = 138 MeV±1% and mσ > 2mπ .

Left: The value of the sigma mass as a function of
the parameters. In the examined region the value of
the Landau pole, Λp is large, however mσ is smaller
than the physical value (450-550 MeV) [Peláez, PoS
ConfinementX 019 (2012)]. The black curves are
(left to right): Λp/T? = 50, T̄c = 0, Th=0

c = 0.

Right: The predicted value of the pseudo-critical
temperature as a function of the parameters. Some

iso-mσ and iso-T? lines are denoted with orange and
blue respectively. The value of Tpc is less sensitive
to the change of parameters than the sigma mass.
Note: The surfaces on both plots are obtained in a further sim-
plified approximation, where the gap equations are replaced
by their Hartree-Fock level variants, in order to save computer
time. The dark-blue points of the left plot denote those param-
eter values, where for several choices of h it has been checked
that the difference between the full 2-loop results and this fur-
ther approximation is less than 3%.

EQUATIONS

The field and gap equations determining the field expectation value (φ̄) and the physical propagators (ḠL,T,A)
at arbitrary φ are obtained from the stationarity conditions:
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Inverting the propagators we can define the gap masses

M̄2
L,T (Q) =
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REALISTIC SIGMA MASS VS. TRIVIALITY BOUNDS
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The cutoff (Λ) dependence of the relative change of φ̄ and M̂2
L at T = {0, Tc, 2Tc}, for three different sets

of parameters. From left to right: mσ[MeV] ≈ {280, 360, 465}, while Λp[GeV] ≈ {186, 16.2, 3.35}.

SILVER BLAZE
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The pressure extrapolated to T = 0. There is
no chemical potential dependence in the symmetric
phase, and the pressure starts to grow from µ = µc,
as expected in a theory with the silver blaze property
[Gattringer et al., Nucl. Phys. B869 65-73 (2013)].

CONCLUSIONS & OUTLOOK

Renormalization program and numerical
method succesfully extended to N 6= 1 and
µ 6= 0.

Phenomenological parametrization of the
O(4) model is possible, however cutoff inde-
pendence decreases.

Parameter space divided into SSB and BEC
regions in the O(2)µ case.

The used truncation preserves the silver blaze
property in the O(2)µ model.

At high T and µ the solution is lost in
the O(2)µ case, further investigations are
needed.

Merge the two projects to investigate pion
condensation.


