Planck Satellite and Particle Physics

SEWM14, EPFL, 17.07.2014 Julien Lesgourgues (EPFL, CERN, LAPTh)

17.07.2014

Planck & Particle Physics – J. Lesgourgues

Planck satellite results

Planck satellite results

Large Scale Structure from CMB lensing

Planck satellite results

Energy scale of inflation

• Energy scale and dynamics of inflation:

• Energy scale and dynamics of inflation:

Inflationary model status in 2013

• Also OK: Hill-top with p=2 or $p\geq4$; also disfavored: inverse power-law

17.07.2014

March 2014: BICEP2

Planck & Particle Physics – J. Lesgourgues

BICEP2 B-modes interpreted as gravity waves

• Also OK: Hill-top with p=2 or $p\geq4$; also disfavored: inverse power-law

17.07.2014

BICEP2 B-modes interpreted as dust + GW

• Also OK: Hill-top with p=2 or $p\geq4$; also disfavored: inverse power-law

17.07.2014

When will we know ?

- August/September 2015: Planck paper on level of polarised dust in BICEP2 region
- September/October 2015: joint Planck+BICEP2 paper on C_I^{BB} after dust removal
- November 2015: new Planck papers, using full Planck data + BICEP2 and other CMB data,

with new r constraints from T, E, B

• Situation could be conclusive (e.g. r = 0.?? \pm 0.04 at 1 σ),

or just improved bound (e.g. r < 0.04 at 1σ)

- Few years: other ground based experiments, $\rightarrow \sigma(r) \sim 0.01$
- 15 years: Lite Bird, Core.... $\sigma(r) \sim 10^{-3} \rightarrow 10^{-4}$

If GW interpretation confirmed...

- Energy scale of inflation T~10¹⁶GeV !!!
- Challenges for QFT (super-Planckian excursion), string theory, etc.
- Most probably, highest temperature in universe after reheating was T~10¹³⁻¹⁵GeV !!! (no more "low-scale reheating", most particles thermalized)
- topological defects, phase transitions, magnetic fields...
- example of PQ axion: different (model-dependent) smoking guns:
 - Axion quantum fluctuations during inflation: Isocurvature modes?
 - Axionic dark matter from misalignement angle, or contribution from axionic string decays?

Planck & Particle Physics – J. Lesgourgues

If we don't believe BICEP2:

- PQ symmetry may break down before inflation
- axion-induced isocurvature perturbations may survive if PQ not restored during inflation or reheating
- Axion density from misalignement angle ONLY

17.07.2014

- Relation between $\Omega_a h^2$ and f_a (unless anthropic suppression of θ_a)
- Then Planck non-detection of isocurvature modes gives:

$$H_I \le 0.87 \times 10^7 \text{ GeV} \left(\frac{f_{\rm a}}{10^{11} \text{ GeV}}\right)^{0.408}$$

- $H_{inflation} \sim 10^{14} \text{ GeV}, \quad H_{reahting} \sim 10^{12-14} \text{ GeV}$
- PQ symmetry breaks down after inflation
- No axion-induced isocurvature perturbations
- Axion density from misalignement angle θ_a + axionic string decay
- Relation between $\Omega_a h^2$ and f_a (order-of-magnitude relation, θ_a being unknown, but no possible anthropic suppression)
- Assuming all CDM is axions and typical θ_a :

$$m_a \sim 80 \ \mu eV$$
 (f_a ~ 7.5 x 10¹⁰ GeV) see arXiv:1405.1860

Neutrinos and other light/massless relic particles

1) to contribute to a fraction of radiation during radiation domination: N_{eff} [e.g. ultra relativistic relics with $T \sim T_{\gamma}$ and m << 0.01 eV]

log(scale factor)

1) to contribute to a fraction of radiation during radiation domination: N_{eff} [e.g. ultra relativistic relics with $T \sim T_{\gamma}$ and m << 0.01 eV]

Several effects on CMB

- impact on expansion
- γ gravitational interactions

1) to contribute to a fraction of radiation during radiation domination: N_{eff} [e.g. ultra relativistic relics with $T \sim T_{\gamma}$ and m << 0.01 eV]

 N_{eff} > 3 = way to release tension with H_0

17.07.2014

To contribute to radiation during RD and matter during MD (hot dark matter fraction)
 [e.g. sterile neutrinos with ~ 1 eV and (nearly) thermalised]

log(scale factor)

To contribute to radiation during RD and matter during MD (hot dark matter fraction)
 [e.g. sterile neutrinos with ~ 1 eV and (nearly) thermalised]

To contribute to radiation during RD and matter during MD (hot dark matter fraction)
 [e.g. sterile neutrinos with ~ 1 eV and (nearly) thermalised]

Dominant Dark Matter component

CMB = best probe of Dark Matter

Evidence for missing mass of non-relativistic species (like rotation curves!)

CMB measures accurately:

- baryon density (first peaks asymmetry),
- total matter density (radiation-matter equality, first peaks height)

• ω_{b} ~0.022, ω_{m} ~0.142, need ω_{dm} ~0.1199 ± 0.0027 (68%CL): 44 σ detection!

Planck XVI 2013

Supported by Large Scale Structure (matter spectrum shape) and astrophysics

CMB/LSS and nature of (dominant) Dark Matter

- For CMB and LSS: Dark Matter required to be
 - not interacting as much as ordinary electromagnetic interactions
 - not hot (small velocities)
- but totally unknown nature:
 - WIMPS, non-weakly interacting;
 - annihilating, decaying, stable;
 - cold or warm;
 - collisionless, self-interacting;
 - oscillating scalar fields;

Possible properties of DM

17.07.2014

Possible properties of DM

CUT-OFF SCALE depends on velocity dispersion (/m) or sound speed

Effective gravitational decoupling between dark matter and the CMB Voruz et al., JCAP, <u>arXiv:1312.5301</u>

17.07.2014

- best constraints from Lyman-alpha: /m ~ T/m < ...
 - Thermal WDM: T given by $\Omega_{\rm DM} \sim 0.23$:

m > 4 keV (95%CL) Viel et al. 2007, 2013

• Non-resonantly produced sterile neutrinos: T given by T_v :

m > 28 keV (95%CL) Viel et al. 2007, 2013

• Resonantly produced sterile neutrino: like CDM+WDM. Loose bound :

m > 2 keV (95%CL) Boyarsky et al. 2009

- best constraints from Lyman-alpha: /m ~ T/m < ...
 - Thermal WDM: T given by $\Omega_{\rm DM} \sim 0.23$:

m > 4 keV (95%CL) Viel et al. 2007, 2013

• Non-resonantly produced sterile neutrinos: T given by T_v :

m > 28 keV (95%CL) Viel et al. 2007, 2013

• Resonantly produced sterile neutrino: like CDM+WDM. Loose bound :

m > 2 keV (95%CL) Boyarsky et al. 2009

- X-ray bounds exclude NRP sterile neutrino
- X-ray line at 3.5 keV: 3σ evidence for sterile neutrinos with m = 7 keV
 Connection with leptogenesis! Bulbul et al. 1402.2301; Boyarsky et al. 1402.4119

17.07.2014

Decay in $\gamma + \nu_a$ constrains (m, θ)

- DM \rightarrow hadrons, leptons, gauge bosons \rightarrow ... \rightarrow electrons, neutrinos, photons
 - Ionization of thermal plasma
 - Heating of thermal plasma
 - Hydrogen excitation

– (unless 100% in neutrinos)

- Modification of recombination and reionisation history
- Effects depends on cross-section over mass σ/m or lifetime τ , and on annihilation/ decay channel
- DM \rightarrow neutrinos and/or lighter sterile species (dark sector)
 - Non-conservation of $\rho_m a^3$: direct effect on matter power spectrum, indirect effect on CMB (integrated Sachs-Wolfe effect)

Naselsky et al. 2001; Padmanabhan & Finkbeiner 2005; Mapelli et al. 2006; Zhang et al. 2006; Natarajan & Schwarz 2008; Belikov & Hooper 2009; Cirelli et al. 2009; Galli et al. 2009; Slatyer et al. 2009; Natarajan & Schwarz 2010; Galli et al. 2011; Finkbeiner et al. 2011; Hutsi et al. 2011; A. Natarajan 2012; Giesen et al. 2012; Slatyer 2013; Cline & Scott 2013; Dvorkin et I. 2013; Planck XVI 2013; Lopez-Honorez et al. 2013; Chluba 2013; Gali et al. 2013; Diamanti et al. 2013; Madhavacheril et al. 2013;

Adams et al. 1998; Hansen & Haiman 2004; Chen & Kamionkowski 2004; Ichiki et al. 2004; Zhang et al. 2007; Kasuya & Kawasaki 2007; Yeung et al. 2012; Cirelli et al. 2012

17.07.2014

Naselsky et al. 2001; Padmanabhan & Finkbeiner 2005; Mapelli et al. 2006; Zhang et al. 2006; Natarajan & Schwarz 2008; Belikov & Hooper 2009; Cirelli et al. 2009; Galli et al. 2009; Slatyer et al. 2009; Natarajan & Schwarz 2010; Galli et al. 2011; Finkbeiner et al. 2011; Hutsi et al. 2011; A. Natarajan 2012; Giesen et al. 2012; Slatyer 2013; Cline & Scott 2013; Dvorkin et I. 2013; Planck XVI 2013; Lopez-Honorez et al. 2013; Chluba 2013; Gali et al. 2013; Diamanti et al. 2013; Madhavacheril et al. 2013;

Adams et al. 1998; Hansen & Haiman 2004; Chen & Kamionkowski 2004; Ichiki et al. 2004; Zhang et al. 2007; Kasuya & Kawasaki 2007; Yeung et al. 2012; Cirelli et al. 2012

17.07.2014

- Bounds from WMAP7/9 and Planck 2003 very similar Madhavasheril et al. 2013
- m>10GeV for thermal wimp; progress expected with Planck polarisation

- Bounds from WMAP7/9 and Planck 2003 very similar Madhavasheril et al. 2013
- m>10GeV for thermal wimp; progress expected with Planck polarisation

Annihilation: VERY INTERESTING RESULTS compared to direct/indirect detection

- Currently excludes DM intepretation of AMS/Pamela positron anomaly if annihilation is Sommerfeld-enhanced (m~TeV)
- Marginal agreement with Fermi anomaly (inner galaxy) (m~20-40 GeV), but can be excluded with Planck polarisation
- ... unless DM annihilation cross-section enhanced in halos (p-wave)
- ... conclusions based on recombination effects, not reionisation

- Bounds from WMAP7/9 and Planck 2003 very similar Madhavasheril et al. 2013
- m>10GeV for thermal wimp; progress expected with Planck polarisation

Annihilation: VERY INTERESTING RESULTS compared to direct/indirect detection

- Currently excludes DM intepretation of AMS/Pamela positron anomaly if annihilation is Sommerfeld-enhanced (m~TeV)
- Marginal agreement with Fermi anomaly (inner galaxy) (m~20-40 GeV), but can be excluded with Planck polarisation
- ... unless DM annihilation cross-section enhanced in halos (p-wave)
- ... conclusions based on recombination effects, not reionisation

Decay into photons and charged particles: not as strong as cosmic ray bounds

Decay into neutrino or dark sector: T > 160 Gyr (95%CL)

Audren et al. 2014

- For WIMPS: weak interactions (with quarks, neutrinos) too small to leave any signature on CMB/LSS
- More generally: many reasonable DM models predict interactions with photons / baryons / neutrinos / other dark species with intermediate strength between weak and electromagnetic (minicharged, asymmetric, magnetic/dipole moment, ...)
- Direct detection provide constraints, limited to quarks and to restricted mass range
- CMB/LSS constraints are universal

• DM-photons

Wilkinson, JL & Boehm 1309.7588

• Collisional damping erasing CMB and/or matter fluctuations below given scale

17.07.2014

• DM-neutrinos

Wilkinson, Boehm & JL, 1401.7597

- Neutrino cluster more due to their interactions, more gravity boost of photon-baryon fluid
- higher damping tail (dominant effect for small cross section)

17.07.2014

• DM-baryons

Dvorkin, Blum, Kamionkowski 1311.2937

• DM-Dark Radiation

Cyr-Racine, de Putter, Raccanelli, Sigurdson 1310.3278

• DM-Dark Energy

. . .

Also effects in matter power spectrum:

CMB bounds can be tightened by Lyman- $\!\alpha$

17.07.2014

NO INTERACTION DETECTED but potentially interesting results for particle physics... and astrophysics... [See Celine Boehm's talk]

- DM-γ interaction :
 - Light (< GeV): at most weak interactions.
 Interesting for DM not annihilating into SM (e.g. asymmetric DM)
 - Heavy (>GeV): DM can interact significantly more than with weak interactions
- DM-v interaction :
 - Upper bound close to predictions of model with coupling between scalar dark matter and neutrinos, giving DM relic density and neutrino masses (radiative corrections)

Boehm, Farzan, Hambye, Palomarez-Ruiz & Pascoli 2008

Planck 2014 release expected to shed more light on

- Energy scale of inflation (BICEP = dust or GWs?)
- N_{eff}, Neutrino and light relic masses
- DM annihilation
- Plenty of other things...

