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✗

✖

✔

✕
Leptogenesis

Neutrino oscillations, i.e. the experimental evidence for lep-

tonic flavor-mixing, have established the existence of small

but nonzero neutrino

masses. Through a

realization of the see-

saw mechanism these

can find a satisfying

theoretical explana-

tion which entails

further interesting

phenomenological

consequences. In particular CP-violating phases in the lep-

tonic mixing open the possibility to explain the baryon asym-

metry of the universe through the leptogenesis scenario.

Analogous to the complex phase in the Cabibbo-Kobayashi-

Maskawa matrix, CP-violating phases in the leptonic mix-

ing may result from phases in vacuum expectation values

of the Higgs fields or from complex Yukawa couplings.

The heavy Majorana neutrinos can

therefore induce a non-vanishing

B−L asymmetry through their lep-

ton number violating decays in the

early universe. This asymmetry

survives the subsequent cooling of the universe and therefore

represents the seed for the structures we observe today and in

which anti-matter is largely absent.

✗

✖

✔

✕
CP-properties and basis invariants

To produce a net (baryon-)charge asymmetry a model with CP-violation

is needed. Consider the toy-Lagrangian L = Lkin +Lint with

Lkin ≡
1

2
∂µψi∂µψi + ∂

µb̄∂µb

Lint ≡ −
1

2
ψiM

2
i jψ j − m2 b̄b −

λ

2!2!
(b̄b)2 −

hi

2!
ψibb −

h∗
i

2!
ψib̄b̄ .

In general the model contains complex phases which lead to a CP-

asymmetry between b and its CP-conjugate field b̄ ≡ b∗. More precisely,

the Lagrangian is CP-violating if CP−1LCP is not equivalent to L if it

is expressed in terms of CP-transformed fields. Here CP represents the

‘generalized’ CP-transform which includes a transformation that leaves

the kinetic Lagrangian Lkin invariant:

(CP)b(x0, x)(CP)−1
= βb̄(x0,−x) ,

(CP)ψi(x0, x)(CP)−1
= Ui jψ j(x0,−x) .

If this equivalence cannot be established by choice of the parameters, the

theory is CP-violating. When exactly this is the case can conveniently be

captured by a ‘CP-odd basis invariant’ (similar to a Jarlskog-invariant):

J ≡ Im Tr(HM3HT M) = 2 Im H12Re H12M1M2(M2
2 − M2

1) .

If J vanishes the theory is CP-conserving and all CP-violating observ-

ables should vanish in a consistent approximation. This statement holds

true after renormalization (MS-bar and OS) and J = 0 is RG-invariant.

✗

✖

✔

✕
Asymmetry: 1PI vs. 2PI

The processes which take place during the epoch of leptogene-

sis can be classified as source terms S0, which account for the

generation of the asymmetry, and washout terms W0, which

tend to deplete the asymmetry. In a 1PI computation and with

Boltzmann-approximation the rate equation for the asymmetry

in the comoving volume Yb can be written in the form

dYb/dz = ǫ S(z) −W(z)Yb .

The generated asymmetry is proportional to the CP-violating

parameter ǫ:

ǫi ≡
Γi − Γ̄i

Γi + Γ̄i

≈ −
1

8πHii

Im H12Re H12M1M2(M2
2
− M2

1
)

(

M2
j
− M2

i
− 1

π
ln(M2

j
/M2

i
)
)2
+
(

M jΓ j − MiΓi

)2
.

It is proportional to J in accordance with the requirement that

CP-violating observables vanish for J = 0. An elegant ap-

proach to the calculation of the lepton asymmetry within 2PI is

based on the use of the divergence of the ‘baryon’ current ∂µJµ.

The part which vanishes in a CP-symmetric configuration may

be interpreted as washout and the remainder as source term:

∂µJµ ⊃ S (x) ≡ 2

x0
∫

t0

dz0

∫

d3z
[

ImΣρ(x, z)ReDF(z, x) − ImΣF(x, z)ReDρ(z, x)
]

.

It depends on the propagators D of the complex field b and

their self-energies Σ. The latter have to be determined self-

consistently as functional derivatives of the 2PI effective action

with respect to the propagators and depend also on the propa-

gators of the mixing fields ψi. A CP-violating parameter cannot

be factored out since it relies on a quasi-particle approximation.

✗

✖

✔

✕
Exact solution of the Kadanoff-Baym equations

In order to address the out-of-equilibrium phenomenon leptogenesis, consistent kinetic equation are
needed. If one wants to go beyond the traditional quasi-particle picture, neQFT represents an adequate
starting point. In particular the divergence of ψi from equilibrium is crucial for the generation of the
asymmetry. Its evolution is governed by Kadanoff-Baym equations for the statistical propagator and
spectral function. For mixing scalar fields they read

[�x + M2
ik]G

k j

F
(x, y) =

y0
∫

t0

d4zΠik
F(x, z)G

k j
ρ (z, y) −

x0
∫

t0

d4zΠik
ρ (x, z)G

k j

F
(z, y) ,

[�x + M2
ik]G

k j
ρ (x, y) =

y0
∫

x0

d4zΠik
ρ (x, z)G

k j
ρ (z, y) .

They are written in terms of resummed propagators of ψi, G, and their self-energy Π. If not one wants
to solve them numerically or to risk loosing effects in unquantified approximations, one can only try to
find exact solutions. Fortunately such a solution exists if one neglects washout. It may be expressed in
terms of deviations from the equilibrium solution as

∆G
i j
ρ (x0, y0, q) = 0 ,

∆G
i j

F
(x0, y0, q) = −Gik

R (x0, q)∆kl
F(q)G

l j

A
(−y0, q) .

Physical interpretation: The system of mixing real fields coupled to a thermal bath of the complex field
begins its evolution at t0 = −∞ in a thermal state (equilibrium solution). At t = 0 an external source
instantly brings it out of equilibrium. After that it slowly thermalises producing some asymmetry.
Because the thermal bath remains in equilibrium this asymmetry would eventually be completely erased
by the washout processes. However, since we neglect the latter here, the asymmetry asymptotically
reaches a constant value. With this solution the value of the asymmetry at any time may be written as

qS (t) =

∫

d3q

(2π)3
∆F(q) tr η(q) .

✗

✖

✔

✕
Effective masses, widths and level-crossing

The description of the asymmetry generation in terms of Boltzmann-like equations is based on

the quasiparticle picture. The positions and widths of the peaks determine the effective masses M

and decay widths Γ of the quasiparticles. Thermal corrections to the masses are ∝ HiiT
2. In a
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thermal resonant leptogenesis scenario (SM+3RHN) these cor-

rections are nevertheless always comparable to the size of the

mass splitting and can therefore affect the resonant enhancement,

except if the model is fine-tuned. For the 2PI solution in terms of

resummed propagators, masses and widths can be defined by

detΩ−1
R ≡ det

[

q2 − M2 − ΠR

]−1
≈

Z

(q2
0
− q2

0,1
)(q2

0
− q2

0,2
)
.

In terms of the zeros q0,I of the denominator the effective masses

and widths are given by

q0,I = ±ωI −
i

2
ΓI , ωI = (q2

+ M2
I )

1
2 .

T
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Depending on the values of the couplings the difference of

the pole masses ∆M can increase with temperature (‘runaway’

regime) or first decrease, reach a minimum and increase again

with temperature (‘level crossing’ regime). The analysis of the

full and diagonal spectral functions demonstrates that in the

vicinity of the level crossing temperature the peaks of the di-

agonal and full propagators do not coincide. Furthermore, the

off-diagonal component has only one well pronounced peak and

cannot describe two quasiparticle excitations. Therefore, in the

vicinity of the level crossing the quasiparticle picture breaks

down and an analysis based on a more general approach is needed. If the mass-eigenvalues actually

cross is a matter of definition. The evolution of the asymmetry is not affected by the choice.

✗

✖

✔

✕
Improved approximations

It is possible to evaluate the results in the Boltzmann-limit - on
the cost of omitting quantum effects such as the finite widths or
oscillations between the two states ψi. The exact solution may
however also be used to obtain improved and quantifiable approx-
imations. Simplifications are possible if the spectral functions are
approximated, off-shell effects are neglected and if the late time
limit t → ∞ is considered. E.g. in the quasi-degenerate limit:

tr η∞(q) = −
J

det M

|Z|2

|q2
0,1
− q2

0,2
|2

Π
2
ρ(ω̄q, q)

(2ω̄q)2

[

∑

I=1,2

1

ΓI

− 2Re
1

i(ω1 − ω2) + 1
2
(Γ1 + Γ2)

]
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The result is proportional to

J which contains the ba-

sic parameters of the La-

grangian and therefore re-

flects the CP-properties of

the theory. The dotted

lines represent a choice of

parameters for which the

mass-eigenvalues cross at a

certain temperature. In this

case a simple Boltzmann-

like approximation features

a spurious enhancement which is absent in the improved approxi-

mation which takes coherent oscillations into account. The quality

of the Boltzmann approximation generally improves at high tem-

peratures because the overlap of the spectral functions decreases

due to increasing mass-splitting. For the same reason the Boltz-

mann limit works better in the runaway case (solid lines).

✗

✖

✔

✕
Testing approximations

These assumptions can be tested numerically thanks to the knowl-

edge of the analytic solution. To this end the quadrature of the
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multi-dimensional integrals

(with possibly rapidly os-

cillating and sharply peaked

integrands) must be per-

formed. The computation

simplifies a bit for the late

time limit considered here.

One can for instance study

the corrections due to the

approximation of the full

detΩ (shape of the spectral

functions). Shown is the ratio of tr η∞(q) with and without Breit-

Wigner approximation. Similarly one can integrate the off-shell
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contributions numerically

and compare to the size of

the on-shell contributions.

Remarkably one finds that

the effects of the former

are completely negligible.

Such that the obtained

analytic approximations

based on these assumptions

are quite accurate (at least

in the late time limit).
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