Three-loop Debye mass and effective coupling in thermal QCD

Ioan Ghişoiu, Jan Möller and York Schröder

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics, Bern

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Background

QCD at finite temperature is afflicted with infrared divergences that can be cured, in part, in the framework of a dimensionally reduced effective theory, Electrostatic QCD. Within this theory we compute the screening mass of the chromo-electric fields and the effective coupling to three-loop order. The screening mass enters the QCD pressure at $\mathcal{O}(q^2)$ whereas the effective coupling will be ultimately used to determine the spatial string tension of QCD, σ_s .

EQCD

Thermal QCD develops three different scales:

1. The hard scale $\propto 2\pi T$: Comes from the non-zero Matsubara modes of bosonic

3-loop sum-integrals

Remaining non-trivial topologies:

- The calculation [4] is based on the pioneering work of Arnold and Zhai [5].
- We extended the method to a large class of V-type sum-integrals.
- Highly IR divergent pieces are solved by further IBP reduction.
- Tensor structure resolved by a mapping to higher dimensional sum-integrals [6,7].
- ▶ *n*-tensor in d-dim = \sum scalar in d+2*n*-dim.
- fields and from all the modes of the fermionic fields.
- 2. The soft scale $\propto gT$: Comes from the chromo-electric screening, generated by resumming Matsubara zero modes.
- 3. The ultra-soft scale $\propto g^2 T$: Comes from the chromo-magnetic screening and is a pure non-perturbative effect.
- At high enough Temperature, $q(T) \ll 1$, a scale separation is performed by isolating the soft scales into effective Lagrangians and by performing a perturbative matching to the original theory.
- Separation of the hard scale generates the EQCD Lagrangian truncated to dim-4 operators:

$$\mathcal{L}_{\mathsf{EQCD}} = -\frac{1}{4} F_{ij}^a F_{ij}^a + \operatorname{Tr}[D_i, A_0]^2 + m_{\mathsf{E}}^2 \operatorname{Tr}[A_0^2] + \lambda_{\mathsf{E}}^{(1)} (\operatorname{Tr}[A_0^2])^2 + \lambda_{\mathsf{E}}^{(2)} \operatorname{Tr}[A_0^4] + \cdots$$
$$D_i = \partial_i - i g_{\mathsf{E}} A_i , \quad i, j \in \{1, 2, 3\} .$$

 \mathcal{L}_{EQCD} is super-renormalizable with only one mass counter-term arising a 2-loops: $\delta m_{\rm E}^2 = (N_c^2 + 1) \frac{\mu_3^{-4\epsilon}}{4\epsilon} (-g_{\rm E}^2 \lambda_{\rm E} C_A + \lambda_{\rm E}^2) = -\frac{10C_A^3}{3\epsilon} \frac{T^2}{(4\pi)^4} g(\bar{\mu})^6 \mu_3^{-4\epsilon} \mu^{-2\epsilon} + \mathcal{O}(g^8) \; .$

Matching computation

Matching: Compute various quantities in both QCD and EQCD and require that they match up to $\mathcal{O}(g^6)$.

Results: $m_{\rm E}$

$\frac{m_{\rm E,ren}^2}{(4\pi T)^2} = \frac{g^2(\bar{\mu})C_{\rm A}}{(4\pi)^2} \left\{ 1 + \frac{g^2(\bar{\mu})C_{\rm A}}{(4\pi)^2} \frac{1}{3} \left(22L + 5 \right) \right\}$ $+\frac{g^4(\bar{\mu})}{(4\pi)^4} \left(\frac{C_{\rm A}}{3}\right)^2 \left(484L^2 + 244L - 180L_3 + \frac{1091}{2} - \frac{207\zeta(3)}{20}\right) + \mathcal{O}(g^6) \right\}$

 T / Λ_{MS}

- Matching of $m_{\rm F}^2$: Compute the pole of the static propagator of A_0 .

 $\left. \text{QCD} : p^2 + \Pi_{00}(0, p^2) \right|_{p^2 = -m_{ol}^2} = 0$ **EQCD** : $p^2 + m_E^2 + \Pi(0, p^2)|_{p^2 = -m_{ol}^2} = 0$

 \triangleright Matching of $g_{\rm F}^2$: The background field gauge imposes explicit gauge invariance on the background fields, reducing the computation to:

$$g_{\rm E}^2 = \frac{1}{1 + \Pi'_T(0, {\rm p}^2)} g^2 T \; .$$

QCD: Thus, the matching requires the gluonic polarization tensor (self-energy):

$$\mathbf{I}_{\mu\nu}^{\mathsf{QCD}}(\mathbf{p}^2) = \sum_{n=1}^{\infty} \Pi_{\mu\nu,n}(0) (g^2)^n + \mathbf{p}^2 \sum_{n=1}^{\infty} \Pi'_{\mu\nu,n}(0) (g^2)^n + \dots$$

EQCD: Scaleless integrals vanish in dim. reg.:

$$\Pi_{\mathsf{EQCD}} = 0.$$

Higher order operators: Part I

...however, one higher order operator [1] does contribute to the self-energy, since it generates a propagator-like counter-term and not a vanishing vacuum integral.

Higher order operators: Part II

$\frac{g_{\rm E}^2}{T} = \dots + \frac{g^8 C_A^3}{(4\pi)^6} \left[\frac{-61\zeta(3)}{5\epsilon} + \frac{10648}{27} L^3 + \frac{1408}{3} L^2 + \left(\frac{14584}{27} - \frac{4394\zeta(3)}{45} \right) L + 155.4 \right]$

▶ Divergence removable by including higher order operators [1].

 \triangleright \mathcal{L}_{EQCD} becomes non-renormalizable. \Rightarrow coupling renormalization starting at $\mathcal{O}(q^8).$

Preliminary results: $g_{\rm E}$

"Drop" divergence \Rightarrow Good convergence. Little dependence on μ . Goal: Compute the spatial string tension, σ_s , through matching of $g_{\rm E}$ to $g_{\rm M}$ and compare it with lattice results as in [8].

$$\mathcal{L}_{\mathsf{dim6}}|_{A_0^2} = -\frac{17N_c}{60}\zeta(3) \times \frac{g^2}{(4\pi)^4 T^2} (\partial_i \partial_i)^2 A_0^a A_0^a \,,$$
$$m_{\mathsf{el}}^2 = m_{\mathrm{E}}^2 \left(1 - \frac{17N_c}{60}\zeta(3)\frac{g^2 m_{\mathrm{E}}^2}{(4\pi)^4 T^2}\right) + \mathcal{O}(g^8) \,.$$

Automation

- Feynman graph generation with QGraf (≈ 500 diagrams).
- Lorentz contraction, color algebra, Taylor expansion with FORM $\Rightarrow 10^7$ sum-integrals.
- Integration By Parts [2] reduction to a set of $\mathcal{O}(10)$ master sum-integrals [3]. \triangleright Change of basis in order to avoid divergent pre-factors in ϵ .

Bibliography

[1] S. Chapman, Phys. Rev. D 50 (1994) 5308. [2] S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087. [3] J. Möller and Y. Schröder, JHEP 1208 (2012) 025 [4] P. B. Arnold and C. -X. Zhai, Phys. Rev. D 50 (1994) 7603 [5] I. Ghișoiu and Y. Schröder, JHEP 1209 (2012) 016 [6] O. V. Tarasov, Phys.Rev. D54 (1996) 6479-6490. [7] I. Ghişoiu and Y. Schröder, JHEP 1211 (2012) 010. [8] M. Laine and Y. Schröder, JHEP 0503 (2005) 067.

ghisoiu@itp.unibe.ch