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Background

QCD at finite temperature is afflicted with infrared divergences that can be cured,
in part, in the framework of a dimensionally reduced effective theory, Electrostatic
QCD. Within this theory we compute the screening mass of the chromo-electric
fields and the effective coupling to three-loop order. The screening mass enters
the QCD pressure at O(g7) whereas the effective coupling will be ultimately used
to determine the spatial string tension of QCD, σs.

EQCD

Thermal QCD develops three different scales:

1. The hard scale ∝ 2πT : Comes from the non-zero Matsubara modes of bosonic
fields and from all the modes of the fermionic fields.

2. The soft scale ∝ gT : Comes from the chromo-electric screening, generated by
resumming Matsubara zero modes.

3. The ultra-soft scale ∝ g2T : Comes from the chromo-magnetic screening and is a
pure non-perturbative effect.

At high enough Temperature, g(T )� 1, a scale separation is performed by
isolating the soft scales into effective Lagrangians and by performing a
perturbative matching to the original theory.
Separation of the hard scale generates the EQCD Lagrangian truncated to dim-4
operators:
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LEQCD is super-renormalizable with only one mass counter-term arising a 2-loops:
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Matching computation

Matching: Compute various quantities in both QCD and EQCD and require that
they match up to O(g6).

I Matching of m2
E: Compute the pole of the static propagator of A0.
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I Matching of g2
E: The background field gauge imposes explicit gauge invariance

on the background fields, reducing the computation to:
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I QCD: Thus, the matching requires the gluonic polarization tensor (self-energy):
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I EQCD: Scaleless integrals vanish in dim. reg.:

ΠEQCD = 0.

Higher order operators: Part I

...however, one higher order operator [1] does contribute to the self-energy, since
it generates a propagator-like counter-term and not a vanishing vacuum integral.
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Automation

I Feynman graph generation with QGraf (≈ 500 diagrams).
I Lorentz contraction, color algebra, Taylor expansion with FORM
⇒ 107 sum-integrals.

I Integration By Parts [2] reduction to a set of O(10) master sum-integrals [3].
I Change of basis in order to avoid divergent pre-factors in ε.

3-loop sum-integrals

Remaining non-trivial topologies:

I The calculation [4] is based on the pioneering work of Arnold and Zhai [5].
I We extended the method to a large class of V-type sum-integrals.
I Highly IR divergent pieces are solved by further IBP reduction.
I Tensor structure resolved by a mapping to higher dimensional sum-integrals [6,7].
I n-tensor in d-dim =

∑
scalar in d+2n-dim.

Results: mE
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I Good convergences.
I Low dependence on

arbitrary scales µ,
µ3.

I Enters the QCD
pressure at O(g7).
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Higher order operators: Part II
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I Divergence removable by including higher order operators [1].

I LEQCD becomes non-renormalizable. ⇒ coupling renormalization starting at
O(g8).

Preliminary results: gE

“Drop” divergence ⇒ Good convergence. Little dependence on µ.
Goal: Compute the spatial string tension, σs, through matching of gE to gM and
compare it with lattice results as in [8].
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[8] M. Laine and Y. Schröder, JHEP 0503 (2005) 067.

ghisoiu@itp.unibe.ch


