

$\label{eq:Fluctuation} Fluctuation induced first order transition in the U(n) \times U(n) \\ models using chiral invariant expansion of the FRG flows$

Gergely Fejős

Theoretical Research Division, Nishina Center RIKEN, Japan

1. INTRODUCTION

- The $U_L(n) \times U_R(n)$ symmetric matrix model is regarded as a low-energy effective model of QCD for n = 2, 3 [1]
- *ϵ*-expansion shows that there is no infrared stable fixed point of
 the β-functions if n ≥ 2 [2]
- No stable IR fixed point: indirect evidence of a fluctuation induced first order transition
- Is it really one? Direct evidence only available for n = 2 [3,4]
- Goals:
 - \longrightarrow search for direct evidence for the order of the transition
 - \rightarrow map the properties of the transition in the parameter space
 - \longrightarrow develop an approximation scheme suitable for

5. CHIRAL INVARIANT EXPANSION

• Based on the expected $M \sim 1$ symmetry breaking pattern $\longrightarrow V_k$ is expanded around this configuration

$$V_k(I_1, I_2, \dots I_n) = U_k(I_1) + \sum_{\{\alpha\}} C_k^{(\alpha)}(I_1) \prod_{i=2}^n I_i^{\alpha_i}$$

- The flow eq. of V_k determines the evolution of U_k and all $C_k^{(\alpha)}$
- V_k on an *n*-dim. grid \leftrightarrow coefficients on a 1-dim. grid
- Three steps of obtaining the flows of the coefficients:
 - \rightarrow calculate the mass matrices using the most general (diagonal) background $M = v_a T^a$

9. PROPERTIES OF THE FLOW

- V_k is becoming convex as $k \to 0$
- For intermediate scales V_k is not convex
- $\longrightarrow T_c$ can only be defined as $T_c = \lim_{k \to 0} T_c(k)$
- $\longrightarrow k = 0$ is difficult numerically \Rightarrow extrapolation

phenomenological applications

2. BASICS

• Model: dynamics of matrix field $M \in \text{Lie}[U(n)]$ with two quartic interactions:

 $\mathcal{L} = \partial_{\mu} M \partial^{\mu} M^{\dagger} - m^{2} \operatorname{Tr} (M M^{\dagger})$ $- \frac{g_{1}}{n^{2}} [\operatorname{Tr} (M M^{\dagger})]^{2} - \frac{g_{2}}{n} \operatorname{Tr} (M M^{\dagger} M M^{\dagger})$

• Symmetries:

 $M \longrightarrow U_R M U_L^{\dagger},$

which is equivalent to $U_V(n) \times U_A(n)$ as

 $M \longrightarrow VMV^{\dagger}, \qquad M \longrightarrow A^{\dagger}MA^{\dagger}$

(with parameters $\theta_{V,A}^a = (\theta_R^a \pm \theta_L^a)/2$).

• Stability \rightarrow constraints on param.'s: $g_1 + g_2 > 0, g_1 + ng_2 > 0$ \rightarrow Case I.: $g_2 > 0, g_1 + g_2 > 0$ \rightarrow Case II.: $g_2 < 0, g_1 + ng_2 > 0$

• Symmetry breaking pattern: [5] \rightarrow Case I.: $U(n) \times U(n) \longrightarrow U(n)$ \rightarrow Case II.: $U(n) \times U(n) \longrightarrow U(n-1) \times U(n-1)$ \implies only case I is compatible with QCD

- \longrightarrow expand the r.h.s. of the flow equation around the $M \sim 1$ symmetry breaking pattern
- \rightarrow identify the invariants and obtain the respective flow equations of the coefficients

6. APPROXIMATE SOLUTION

• The chiral invariant expansion is approximated as

 $V_k \approx U_k(I_1) + C_k(I_1) \cdot I_2$

- Consequences:
 - \longrightarrow 2 component condensate is sufficient
 - \rightarrow identification of the invariants is easy
 - \longrightarrow two coupled flow equations for U_k and C_k
- The excitations appear: σ , a_0 , π

$$\partial_k U_k(I_1) = \frac{k^4 T}{6\pi^2} \sum_{\omega_n} \left[\frac{n^2}{\omega_n^2 + E_\pi^2} + \frac{n^2 - 1}{\omega_n^2 + E_{a_0}^2} + \frac{1}{\omega_n^2 + E_\sigma^2} \right]$$
$$\partial_k C_k(I_1) = \frac{k^4 T}{6\pi^2} \sum_{\omega_n} F(I_1; \omega_n)$$

with

- It could make sense to stop the flow at $\hat{k} = 1/L (= 0.2 \text{ on fig.})$
- Transition is always of first order

10. CRITICAL TEMPERATURE (T_c)

3. FUNCTIONAL RENORMALIZATION GROUP

• Scale (k) dependent effective action (Γ_k):

$$\Gamma_k[\bar{\phi}] = W_k[J] - \int J\bar{\phi} - \frac{1}{2} \int \bar{\phi} R_k \bar{\phi}$$

 $\longrightarrow R_k$ (regulator) suppresses modes with momenta $q \leq k$ $\longrightarrow k = 0$: quantum effective action, $k = \Lambda$: classical action \longrightarrow satisfies a flow equation [6]

$$\partial_k \Gamma_k = \frac{1}{2} STr \left[\frac{1}{\Gamma_k^{(2)} + R_k} \partial_k R_k \right]$$

• Local potential approximation (LPA):

 $\Gamma_k[\bar{\phi}] \approx \int_x \left(\partial_\mu \bar{\phi}(x) \partial^\mu \bar{\phi}(x) - V_k(x) \right)$

• Litim's 3D regulator:

 $R_k(q) = (k^2 - \vec{q}^2)\Theta(k^2 - \vec{q}^2)$

• Flow of the local potential at temperature T:

$$\partial_k V_k = \frac{k^4}{6\pi^2} T \sum_{\omega_n} \sum_i \frac{1}{\omega_n^2 + k^2 + M_i^2}$$

4. SYMMETRY REQUIREMENTS

1	$4C_k (4C_k(n - 3) + (1 - 4n) 1 + C_k) / n$	
Ŧ	$(\omega_n^2 + E_{a_0}^2)^3$	
1	$4\left(3C_kC'_kI_1 + 4I_1^2C'_k + C_k(3C_k - 2C''_kI_1^2)\right)/n$	
Ŧ	$(\omega_n^2 + E_{a_0}^2)(\omega_n^2 + E_{\sigma}^2)^2$	
	$- \frac{64C_k^3 I_1^2 (C_k - I_1 C_k')/n}{n} - $	$48C_k^2 I_1^2 C_k'$
I	$(\omega_n^2 + E_\pi^2)^2 (\omega_n^2 + E_{a_0}^2)^3 (\omega_n^2 + E_{a_0}^2)^3$	$E_{\pi}^2)(\omega_n^2 + E_{a_0}^2)^3$
	$+ \frac{6C_k + (1 - 2n^2)I_1C'_k}{6C_k + (1 - 2n^2)I_1C'_k} - 6C_k + (1 - 2n^2)I_1C'_k$	$-9I_1C'_k + 2I_1^2C''_k$
I	$(\omega_n^2 + E_{a_0}^2)^2 \qquad I_1 \qquad (\omega_n^2 + E_{a_0}^2)^2 = I_1 \qquad (\omega_n$	$\sigma_n^2 + E_\sigma^2)^2 I_1$
+	$+ \frac{4C_k(6C_k + 9I_1C'_k + 2I_1^2C''_k)/n}{4C_k(6C_k + 9I_1C'_k + 2I_1^2C''_k)/n}$	
	$(\omega_n^2 + E_{a_0}^2)(\omega_n^2 + E_{\sigma}^2)^2$	
	$\underline{2C_k(12C_k+2(1-2n^2)I_1C_k')/n}$	
	$(\omega_n^2 + E_{a_0}^2)^3$	

7. β -FUNCTIONS

- In the dimensionally reduced theory, the flow equations give account of the β -functions
- Dimensional reduction: formally $T \to \infty$
- Assumption: V_k has the form of the classical action

$$U_k(I_1) = m_k^2 I_1 + \frac{4\pi^2}{3} \left(g_{1,k} + \frac{g_{2,k}}{n}\right) I_1^2$$
$$C_k(I_1) = \frac{4\pi^2}{3} g_{2,k}$$

• β -functions in $d = 4 - \epsilon \dim : (\bar{g}_{i,k}: \text{ dimensionless couplings})$

- Smaller g_1 leads to smaller T_c as a function of g_2
- T_c is not very sensitive to the flavor number n
- T_c grows with increasing $|m^2|$

11. JUMP OF THE ORDER PARAMETER (v_0^*)

• The local potential depends on chiral invariant tensors $\{I_i\}$ (i = 1, ...n)

 $V_k = V_k(I_1, I_2, \dots I_n)$

• Set of choice:

 $I_{1} = Tr[M^{\dagger}M],$ $I_{2} = Tr\left[M^{\dagger}M - \frac{1}{n}Tr[M^{\dagger}M]\right]^{2}$... $I_{n} = Tr\left[M^{\dagger}M - \frac{1}{n}Tr[M^{\dagger}M]\right]^{n}$

• The mass matrix entering to the r.h.s of the flow eq. can be obtained via Leibnitz's rule:

 $M_{ab}^{2} = \frac{\partial^{2} V_{k}}{\partial I_{i} I_{j}} \frac{\partial I_{i}}{\partial \phi_{a}} \frac{\partial I_{j}}{\partial \phi_{b}} + \frac{\partial V_{k}}{\partial I_{i}} \frac{\partial^{2} I_{i}}{\partial \phi_{a} \partial \phi_{b}}$

• Expected symmetry breaking pattern: $M \sim 1$ $\longrightarrow I_1 = v_0^2/2, \quad I_{n>1} = 0$

$$\beta_{1} = k \frac{\partial \bar{g}_{1,k}}{\partial k} = -\epsilon \bar{g}_{1,k} + \frac{n^{2} + 4}{3} \bar{g}_{1,k}^{2} + \frac{4n}{3} \bar{g}_{1,k} \bar{g}_{2,k} + \bar{g}_{2,k}^{2}$$
$$\beta_{2} = k \frac{\partial \bar{g}_{2,k}}{\partial k} = -\epsilon \bar{g}_{2,k} + \frac{2n}{3} \bar{g}_{2,k} + 2\bar{g}_{1,k} \bar{g}_{2,k}$$

 \longrightarrow these are exactly the same results as of the ϵ -expansion [2]

8. NUMERICS

- Grid method:
 - \longrightarrow functions stored typically $I_1/\Lambda^2 \in [0, 2]$
 - \rightarrow step size on the grid: 10^{-3}
 - \longrightarrow field derivatives: calculated using the 7-point formula
 - \longrightarrow solution: adaptive Runge-Kutta method
 - \longrightarrow typical step size in *k*-space: $10^{-5}\Lambda$
- Reaching k → 0 is very costly numerically
 → T_c(k = 0) and the jump of v₀ at k = 0 at the transition
 point are obtained by extrapolation
 → in both cases f(k) = a + b ⋅ k^c is fitted

12. CONCLUSIONS

- $U(n) \times U(n)$ model: low energy effective model of QCD
- Obtaining the effective potential using FRG formalism
 → Litim's 3D regulator + Local Potential Approximation

 → Finite temperature treatment
- Effective potential: represented by a chiral invariant expansion
- Direct evidence of a first order transition for arbitrary n
- Possible extensions with finite quark masses and anomaly

13. REFERENCES

M. Gell-Mann & M. Levy, Nuovo Cim. 16, 705 (1960).
 R. D. Pisarski & F. Wilczek, Phys. Rev. D 29, 338 (1984).
 J. Berges, N. Tetradis & C.Wetterich, Phys. Rept. 363, 223 (2002).
 K. Fukushima et al. Phys. Rev. D 83, 116005 (2011)
 G. Fejős, Phys. Rev. D 87, 056006 (2013).
 C. Wetterich, Phys. Lett. B 301, 90 (1993).