Results from the LHC Heavy-Ion Programme: an Overview

Federico Antinori INFN, Padova, Italy and CERN, Geneva, Switzerland

Contents

a (personal!) choice of results...

- Pb-Pb collisions
 - correlations
 - direct photons
 - particle yields
 - jet quenching
 - high pT suppression
 - di-jet imbalance
 - modified fragmentation
 - quarkonia
 - heavy flavour
- p-Pb collisions
 - nuclear modification factor
 - quarkonia
 - signs of collectivity
- conclusions

Ultrarelativistic AA Collisions

basic idea:

compress large amount of energy in small volume

 \rightarrow produce a "fireball" of hot matter:

temperature O(10¹² K)

- ~ 10⁵ x T at centre of Sun
- ~ T of universe @ ~ 10 µs after Big Bang
- extreme conditions: how does matter behave?
 - \rightarrow study the fireball properties
 - QCD predicts state of deconfined quarks and gluons (Quark-Gluon Plasma)
 - evidence for deconfinement already at lower energy (CERN-SPS, BNL-RHIC)
 - − LHC: controlled probes \rightarrow properties of QCD medium

Nuclear collisions at the LHC

LHCb (dedicated to beauty, joined in pA run)

1.1

ALICE (dedicated to AA)

ATLAS (general purpose, AA capabilities)

FAntinori - SEWM-14

19月1日

Heavy lons in Run 1

2010/12/06 21.35

335

340

- two successful Pb-Pb runs already ۰
 - 2010 → ~10/µb
 - 2011 → ~150/µb
- + p-Pb "control" run
 - $-2013 \rightarrow \sim 30/\text{nb}$

some numbers (2011 Pb-Pb run):

- ~ 1.2 10^8 ions/bunch
- 358 bunches
 - 200 ns basic spacing
- $\beta^* = 1 \text{ m}$
- L ~ 5 10²⁶ cm⁻²s⁻¹
- \rightarrow ~ 4000 Hz interaction rate

Geometry of a Pb-Pb collision

central collisions

- small impact parameter b
- − high number of participants \rightarrow high multiplicity
- peripheral collisions
 - large impact parameter b
 - − low number of participants \rightarrow low multiplicity
- for example: sum of the amplitudes in the ALICE V0 scintillators

reproduced by Glauber model fit (red):

- random relative position of nuclei in transverse plane
- Woods-Saxon distribution inside nucleus
- simple model of particle production
- deviation at very low amplitude expected due to non-nuclear (electromagnetic) processes

Azimuthal asymmetry

- → transfer of this asymmetry to momentum space provides a measure of the strength of collective phenomena
- Large mean free path
 - particles stream out isotropically, no memory of the asymmetry
 - extreme: ideal gas (infinite mean free path)
- Small mean free path
 - larger density gradient \rightarrow larger pressure gradient \rightarrow larger momentum
 - extreme: ideal liquid (zero mean free path, hydrodynamic limit)

Azimuthal asymmetry

- to quantify the asymmetry:
 - \rightarrow Fourier expansion of the angular distribution:

 $\propto 1 + 2v_1 \cos(\varphi - \psi_1) + 2v_2 \cos(2[\varphi - \psi_2]) + \dots$

- − in the central detector region ($\vartheta \sim 90^\circ$) $\rightarrow v_1 \sim 0 \rightarrow a$ symmetry quantified with v_2
- experimentally: $v_2 \sim as$ large as expected by hydrodynamics

Higher harmonics

- a beautiful tool...
- initial state geometrical asymmetries \longrightarrow final state momentum asymmetries

 connects final state distribution to initial state fluctuations, via medium transport

The QGP shines!

• p_T spectrum of (direct) photons emitted at LHC

• "temperature" ~ 300 MeV (\rightarrow largest ever man-made, btw...)

Particle yields

- ~ thermodynamic equilibrium
 - T ~ 156 MeV
 - now including ³^AH!

- ... but with some tension
 - especially p and K*

- origin of deviations?
 - feed down from resonance decays?
 - sequential freeze-out?
 - non-equilibrium freeze-out?

High p_T suppression

- production of particles at high p_T
 - above 2-3 GeV/c, say
- is expected to scale like the number of binary nucleon-nucleon collisions:

$$\left. \frac{dN}{dp_T} \right|_{AA} = \left\langle N_{coll} \right\rangle \frac{dN}{dp_T} \right|_{p_I}$$

- can be modified by nuclear effects
 - e.g.: particles can lose energy when traversing the QCD plasma fireball ("jet quenching")
 - \rightarrow suppression of particle production at high \mathbf{p}_{T}
- define a "nuclear modification factor" R_{AA}

$$R_{AA} = \frac{\frac{dN}{dp_T}}{\left\langle N_{coll} \right\rangle \frac{dN}{dp_T}}_{pp}$$

• in the absence of nuclear effects $\rightarrow R_{AA} = 1$

Strong quenching

 Pb-Pb significantly below scaled pp for central collisions (filled points)

• R_{AA}:

- clear increase at higher p_T

Strong angular dependence

• significant effect, even at 20 GeV and beyond!

 \rightarrow sensitivity to path length dependence of energy loss

F Antinori - SEWM 14 - EPFL - 15 July 2014

Dependence on particle species

- particle mass / type (baryon/meson) dependence of quenching
 - e.g.: proton enhancement

 \rightarrow sensitivity to hadronisation in medium

F Antinori - SEWM 14 - EPFL - 15 July 2014

$\mathsf{R}_{\mathsf{A}\mathsf{A}}$ for vector bosons

- electroweak probes, on the other hand, are unmodified
- \rightarrow (essential cross check!)

Di-jet imbalance

• Pb-Pb events with large di-jet imbalance observed at the LHC

→ recoiling jet strongly quenched!

CMS: arXiv:1102.1957

Di-jet imbalance

imbalance quantified by the di-jet asymmetry variable A_J:

$$A_{J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \qquad \begin{array}{c} E_{T1} > 100 GeV \\ E_{T2} > 25 GeV \end{array}$$

$$R = 0.4 \qquad |\eta| < 2.8$$

- with increasing centrality:
- → enhancement of asymmetric di-jets with respect to pp
 - & HIJING + PYTHIA simulation

ATLAS: PRL105 (2010) 252303

Di-jet $\Delta \phi$

• no visible angular decorrelation in $\Delta \phi$ wrt pp collisions!

 \rightarrow large imbalance effect on jet energy, but very little effect on jet direction!

Jet R_{AA}

CMS PAS HIN-12-004

Jet v₂

substantial azimuthal asymmetry up to highest jet energies!

Jet fragmentation is modified

• ratio of Pb-Pb and pp Fragmentation Functions

Where does the energy go?

• look at missing p_T projected on leading jet axis

• the energy reappears, degraded, outside of the jet cone...

Particle composition

peak excess particle composition similar to pp!

Quarkonium suppression

- QGP signature proposed by Matsui and Satz, 1986
- QQ potential screened in QGP for r > λ_D (Debye length)
 → binding suppressed for states with r > λ_D
- substantial suppression at SPS & RHIC
 - effect similar at the two machines

J/ψ suppression at the LHC

LHC (ALICE, 2.5 < y < 4, p_T > 0)

$J/\psi R_{AA}$: p_T dependence

decreases with p_T

• at RHIC: opposite behaviour

consistent with coalescence models!

J/ψ flow?

some hint for a modulation...?

more statistics needed!

Bottomonium suppression

- stronger suppression for less bound Y states
 - very efficient melting: Y(3S) not measurable (upper limit only)

Charm and beauty: ideal probes

- study medium with probes of known colour charge and mass
 - \rightarrow e.g.: energy loss by gluon radiation expected to be:
 - parton-specific: stronger for gluons than quarks (colour charge)
 - flavour-specific: stronger for lighter than for heavier quarks (dead-cone effect)
- study effect of medium on fragmentation
 - (no extra production of c, b at hadronization)
 - \rightarrow independent string fragmentation vs recombination
 - e.g.: D⁺_s vs D⁰, D⁺
- + measurement important for quarkonium physics
 - open $Q\overline{Q}$ production natural normalization for quarkonium studies
 - B meson decays non negligible source of non-prompt J/ ψ

R_{AA}: Flavour Dependence!

- p_T < 8 GeV/c:
 - hint of less suppression than for π ?
- p_T > 8 GeV/c
 - same suppression as for π ...
- F Antinori SEWM 14 EPFL 15 July 2014

• indication of $R_{AA}(b) > R_{AA}(c)$!

D meson v_2

- indication of non-zero v₂
 - consistent with strong coupling of c to medium

 theory must describe simultaneously v₂ and R_{AA} ...

Parton shadowing...

complication in interpretation of Pb-Pb results:
 different parton distribution functions in protons and nuclei

x = fraction of nucleon momentum carried by parton

→ uncertainty on "trivial" nuclear effects baseline
 → measure p-Pb collisions!!!

F Antinori - SEWM 14 - EPFL - 15 July 2014

p-Pb collisions in the LHC!

- tricky, but can be done...
- 2-in-1 design...
 - ightarrow identical bending field in two beams
 - → locks the relation between the two beam momenta:
 - p (Pb) = Z p(proton)
 - ➔ different speeds for the two beams!
- adjust length of closed orbits!
 - to compensate different speeds
- different RF freq for two beams at injection and ramps
- short low lumi pilot run (a few hours) on 12/9/2012
- first run in Jan-Feb 2013!
- → ~ 30/nb

Control experiment: R_{pPb}

• measurement of nuclear modifications in initial state

High- p_T puzzle!

- high- $p_T R_{pA}$ from CMS: enhancement??
 - similar picture from ATLAS (not from ALICE)

- results rely on interpolated pp reference...
 - → need pp data at 5 TeV!

à suivre...

R_{pPb} for Heavy Flavours

D mesons

• HF muons

 \rightarrow Pb-Pb suppression not due to initial state

J/ψ in p-Pb

R_{pPb} consistent with shadowing
 p_T-integrated

R_{pPb} back to 1 at high p_T
 opposite behaviour for Pb-Pb!

F Antinori - SEWM 14 - EPFL - 15 July 2014

$\psi(2S)$ in p-Pb

- surprise: more suppressed than $J/\psi!$ -
 - how can shadowing (initial state) do that?
 - at odds with shadowing in Pb hemisphere
- more "active" events \rightarrow larger effect
 - i.e.: effect increases with multiplicity

 \rightarrow indication of final state effects?

Bottomonia in p-Pb

•

excited states more suppressed

Y(1S) ~ OK with shadowing

The Ridge

- in addition to near side peak and away-side recoil...
 - ... there's an additional near side ridge in p-Pb first observed by CMS [PLB718 (2013) 795]

F Antinori - SEWM 14 - EPFL - 15 July 2014

The Double Ridge

- Can we separate the jet and ridge components?
- in 60-100% no ridge seen, similar to pp $\rightarrow \text{ what remains if we subtract 60-100\%?}$ $0-20\% \qquad 60-100\%$ $2 < p_{\text{Trig}} < 4 \text{ GeV/c}$ $p-Pb |_{S_{\text{IN}}} = 5.02 \text{ TeV}$ $2 < p_{\text{Trig}} < 4 \text{ GeV/c}$ $p-Pb |_{S_{\text{IN}}} = 5.02 \text{ TeV}$ $1 < p_{\text{Trassoc}} < 2 \text{ GeV/c}$ (0-20%) (60-100%) (0-20%) (60-100%)

• the ridge is doubled!

 \rightarrow the origin of this structure is still unknown!

similar structure observed in Pb-Pb is attributed to hydrodynamic flow...

CGC-glasma graphs can also produce symmetric ridges?

F Antinori - SEWM 14 - EPFL - 15 July 2014

Identified particles

• how does the correlation depend on the particle species?

p-Pb

– where particle species dependence is attributed to collective flow!

Pb-Pb

Multiparticle correlations

• v2 calculated with higher order cumulants

- again: p-Pb very similar to Pb-Pb
- azimuthal asymmetry is a true multi-particle effect, in both systems!

Multi-strange baryons

• p-Pb smoothly bridges Ξ , Ω abundances from pp to Pb-Pb values!

 \rightarrow onset of collective effects in p-Pb?

Conclusions

- the LHC has ushered in a new era for ultrarelativistic AA collisions
 - abundance of hard probes
 - state-of-the-art collider detectors (ALICE, + AA capabilities in ATLAS, CMS)
- Run 1: two major discoveries...
 - new regime for J/ ψ production \rightarrow evidence for recombination?
 - double ridge in p-Pb (and pp?) → signal of collectivity? parton saturation?
- ... one outstanding puzzle...
 - is R_{pPb} enhanced at high p_T ?
- ... + rich harvest of other results
 - system still very close to thermodynamic equilibrium and ideal hydro behaviour
 - strong jet quenching, up to highest jet energies
 - no evidence of angular decorrelation
 - angular dependence: sensitivity to path length dependence
 - indication of parton mass ordering in heavy flavour quenching
 - hints of final state effects in p-Pb? ($\psi(2S)$ in p-Pb)
- the future looks bright → stay tuned!
 - Run 2: O(10) increase in statistics, int lumi
 - Run 3: O(100) increase, ALICE 2.0 upgrade!

Thank you!

F Antinori - SEWM 14 - EPFL - 15 July 2014

Particle yields

- ~ at thermodynamic equilibrium...
 - now including ${}^3_{\Lambda}$ H!

- some tension too?
- higher precision needed...

The D_s

• HF in-medium hadronisation!

- a hint of strangeness enhancement?
- more stats needed!

F Antinori - SEWM 14 - EPFL - 15 July 2014